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Program

Topics:
I Random effects & variance components
I Linear mixed models in general.

Read: Fitzmaurice et al. (2011): chapters 8, 21, 22.

Examples:
I Random effects ANOVA
I Multi-level models
I Random regression
I Cross-over trials
I Comparison of measurement methods
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Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods
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What are repeated measurements?

Repeated measurements refer to data where the same outcome has
been measured in different situations (or at different spots) on the
same individuals.

I Special case: longitudinal means repeatedly over time.
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What is clustered data?

Repeated measurements are termed clustered data when the same
outcome is measured on groups of individuals from the same
families/workplaces/school classes/villages/etc.
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Analysis of repeated measurements

Many applications:
I Longitudinal data
I Treatments applied to multiple limbs, teeth, etc

within the same person.
I Cross-over trials.
I Cluster randomized trials / multi-center studies.
I Comparisons / reliability of measurement methods.

ATT: Measurements belonging to the same subject/cluster are
correlated. If we fail to take this correlation into account we will
experience:

I p-values that are too small or too large.
I confidence intervals that are too wide or too narrow.
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One-way analysis of variance – with random variation

Comparison of k groups or clusters, satisfying:
I The groups are of no individual interest and it is of no

relevance to test whether they have identical means.
I The groups may be thought of as representatives from a

population, that we want to describe.

Measurements belonging to the same subject/cluster tend to be
correlated (look alike) due to e.g.

I Environmental variation.
I Between regions, hospitals or countries.

I Biological variation.
I Between individuals, families or animals.
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Example: Rabbit data

I R = 6 rabbits vaccinated.
I In S = 6 spots on the back.

Response: swelling in cm2

Research question:
How much swelling can be
expected in reaction to the
vaccine?
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Random effects anova (the two-level model)
We let each rabbit have its own level of swelling described as

Yrs = Ar + εrs

, I We assume that these individual levels are randomly sampled
from a normally distributed population,

Ar ∼ N (µ, ω2
B)

I The error terms are considered to be independent normal,

εrs ∼ N (0, σ2
W )

The rabbit levels are so-called random effects and the variances
ω2

B and σ2
W are so-called variance components describing the

variance between rabbits and within rabbits, respectively.
10 / 80

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Implications of random effects anova
All observations are considered as randomly sampled measurements
from the same population. Thus, the model implies that all
measurements follow the same normal distribution:

Yrs ∼ N (µ, ω2
B + σ2

W )

I Population mean µ, the grand mean.
I Population variance ω2

B + σ2
W , the total variation.

But: Measurements made on the same rabbit are correlated with
the so-called intra-class correlation

Corr(yr1, yr2) = ρ = ω2
B

ω2
B + σ2

W
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Compound symmetry

The implied covariance of the repeated measurements has a
compound symmetry-structure:

Σ = (ω2
B + σ2

W ) ·




1 ρ . . . ρ
ρ 1 . . . ρ
... ... ...
ρ ρ . . . 1




In particular all pairs of spots on the same rabbit are assumed to
be equally correlated (with the intra-class correlation).

I We say that the spots are exchangeable.

Note: If this is not the case, an unstructured covariance migth fit the data
better. Say, if some spots are expected to respond more similarly than others.
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Random effects ANOVA in PROC MIXED

PROC MIXED DATA=rabbit;
CLASS rabbit spot;
MODEL swelling = / S;
RANDOM rabbit;

/* or REPEATED spot / TYPE=CS SUBJECT=rabbit; */
RUN;

Covariance Parameter Estimates

Cov Parm Estimate
rabbit 0.3304
Residual 0.5842

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 7.3667 0.2670 5 27.59 <.0001
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Estimation of variance components

Level Variation Variance component Estimate %of variation
1 Between ω2

B 0.3304 36%
2 Within σ2

W 0.5842 64%
Total ω2

B + σ2
W 0.9146 100%

Asymptotic standard errors can be obtained with:

PROC MIXED COVTEST DATA=rabbit;

I 95% CI for Intra-rabbit variation σ2
W : (0.37,1.04).

I 95% CI for Inter-rabbit variation ω2
B : (0.06,2.48).

BUT: The coverage may be poor in small samples.
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Estimating variance components
In balanced data we have explicit formulae?:

σ̃2
W = MSW and ω̃2

B = MSB −
MSW

n

I n is the number of observations in each cluster
I MSW and MSB are Mean Squares within and between

clusters, defined as in one-way ANOVA.

? This is deduced from

E(MSB) = ω2
B + σ2

W
n

E(MSW ) = σ2
W
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Describing variation
Typical differences between spots on the same rabbit:

yrs1 − yrs2 = εrs1 − εrs2

∼ N (0, 2ω2
W )

I Normal region: ± 2
√

2ω2
W = ± 2.16 cm2

Typical differences between spots on different rabbits:

yr1s1 − yr2s2 = αr1 − αr2 + εr1s1 − εr2s2

∼ N (0, 2σ2
B + 2ω2

W )

I Normal region: ± 2
√

2σ2
B + 2ω2

W = ± 2.70 cm2
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Why not use traditional one-way anova?

PROC GLM DATA=rabbit;
CLASS rabbit spot;
MODEL swelling = rabbit / NOINT SOLUTION;
ESTIMATE ’grand mean’ rabbit 0.167 0.167 0.167 0.167 0.167 0.167;

RUN;

I Test of H0 : µ1 = . . . = µ6: P = 0.004.
I Estimate of grand mean: 7.367 (0.127)

But: We are not interested in these particular 6 rabbits,
only in rabbits in general, as a species!

I Estimate from mixed model: 7.367 (0.267)
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One-way anova with and without random variation

Classical one-way anova
I The rabbit means µr are fixed parameters,

- supposedly of an interest of their own.
I We say that the rabbit factor is a fixed effect.

Random effects one-way anova
I The rabbit levels Ar are considered random and their

population mean µ and variance ω2
B + σ2

W is the major
interest.

I We say that the rabbit factor is a random effect.
I (If data is from a pilot study used in the planning of some

trial, the intra-class correlation will also be of interest).
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Fixed or random effect?

How do we decide whether a factor should be modeled as fixed or
random?

Fixed
I The specific values of the factor have been predetermined

when planning the study.
I Allows inference for these particular values only.
I Demands a decent number of observations in each group.

Random
I A representative sample of values of the factor is present.
I Allows inference to be extended beyond the values in the

experiment and to the population they were sampled from.
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Estimation of individual rabbit means

Sometimes estimates of individual random effects are used for e.g.
prediction of future disease status.

How do we estimate them?
I Simple averages ȳr . of the individual measurements.
I Best unbiased linear predictors (BLUPs) are weighted
averages of the individual and the population mean:

ω̃2
B

ω̃2
B + σ̃2

W
S

ȳr . +
σ̃2

W
S

ω̃2
B + σ̃2

W
S

ȳ..

They have been shrinked towards the grand mean, ȳ..;
We are borrowing strenght from the neighbours.
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BLUPs vs averages
Full data

1
1

2

2

3
3

4
4

55

66

Reduced data

1
1

2

2

3
3

4
4

55

66

Note: We see larger shrinkage for rabbit no. 2 when the 3 smallest
measurements from this rabbit have been removed.
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General variance component models

Generalisations of ANOVA and GLM models involving several
sources of random variation, so-called variance components.

Examples of sources of random variation:
I Environmental variation.

I Between regions, hospitals or countries.
I Biological variation.

I Between individuals, families or animals.
I Within-individual variation.

I Between arms, teeth, days.
I Variation due to uncontrollable circumstances.

I E.g. time of day, temperature, observer.
I Measurement error.
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Multilevel models
Variance component models are also called multilevel models.

I Levels are most often hierarchical.
I We have variation, i.e. a variance component, on each level.
I And possibly systematic effects (covariates) on each level.

individual observation → context/cluster → context/cluster
level 1 → level 2 → level 3
students → classes → schools
patient → clinic → regions
time → subject →
spot → rabbit →
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Example: A three-level model

Outcome: Number of nuclei per cell in the rat pancreas
(used for the evaluation of cytostatica)

I R = 4 rats.
I S = 3 sections for each rat.
I F = 5 randomly chosen fields from each section.

level 1 → level 2 → level 3
fields → sections → rats
σ2 τ2 ω2

Reference: Henrik Winther Nielsen, Inst. Med. Anat.

25 / 80

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

1

1

11

1

1

1

1
1

1

11

1

11

1

1

1

1

1

2

2

2
2

2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2
3

3

3
3

3

3

3

3
3

3

3

3

3

33

3

3

3

3

3

26 / 80

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Estimated variation and correlation

Level Variation Estimate
3 Rats (ω2) 0.0179 (8.2%)
2 Sections (τ2) 0.0029 (1.3%)
1 Fields (σ2) 0.1968 (90.4%)

Total 0.2176 (100%)

Measurements on Correlation Typical differences

Different rats 0 ± 2
√

2(ω2 + τ2 + σ2) = ± 1.319
Different sections
of the same rat ω2

ω2+τ2+σ2 = 0.082 ± 2
√

2(τ2 + σ2) = ± 1.264
Different fields
of the same section ω2+τ2

ω2+τ2+σ2 = 0.096 ± 2
√

2σ2 = ± 1.255
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Merits of multilevel models

We get a better understanding of the various sources of variation.

Effects within may be estimated more precisely (higher power),
since some sources of variation are eliminated, e.g. by making
comparisons within a family. This is analogous to the paired
design situation.

When planning investigations, estimates of the variance
components are needed in order to compare the power of various
designs, and help us decide

I How many replicates do we need at each level?
I Should we randomize entire clusters or randomize within the

clusters?
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Design considerations

(Note the analogy with cluster-randomized trials.)

Plan an experiment with:
I R rabbits.
I S spots for each rabbit.
I R × S measurements.

Std. error of grand mean,

Var(ȳ) = ω2
B

R + σ2
W

RS ,

decreases with R and S .
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The different curves correspond
to S varying from 1 to 10.
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Effective sample size
How many rabbits would we need to obtain the same precision in
estimating the grand mean if we had only one measurement on
each of R1 rabbits?

Solve the equation for Var(y) to get:

R1 = R × S
1 + ρ(S − 1)

where ρ is the within rabbit correlation.

I Estimate: ρ = ω2
B

ω2
B+σ2

W
= 0.3304

0.3304+0.5842 = 0.361⇒ R1 = 12.8

I.e. one measurement on each of thirteen rabbits gives the same
precision as six measurements on each of six rabbits.
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Case study: Cortisol

Outcome: Concentration of cortisol in salvia samples taken
morning and evening in workers in Aarhus amt and
kommune in 2007 (3536 participants) with similar
follow-up in 2009 (2408 participants)

Interest: effect of stressors: lifeevents, Effort Reward Index

level variation covariates
3 between persons gender, age
2 within person: between days bmi, stressors, year
1 within person: within days time (morning/evening)
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Sample data
From 8 randomly selected men:

NOTE: concentrations on logarithmic scale.
32 / 80



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Multilevel analysis

PROC MIXED DATA=prism COVTEST; WHERE sex EQ ’male’;
CLASS id year time;
MODEL logcortisol = time / SOLUTION CL DDFM=SATTERTH;
RANDOM id id*year;

RUN;

Covariance Parameter Estimates

Cov Parm Estimate Std.Error Z Value Pr > Z
id 0.05993 0.01266 4.73 <.0001
id*year 0 . . .
Residual 0.5385 0.01794 30.01 <.0001

The between days-variance component estimate is a zero!
I Level 2 covariates (stressors) can only have very little impact
on individual cortisol koncentrations!
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Negative variance components
In case one of the variance component estimates becomes
negative, SAS repports a zero.

What does it mean?
I The zero-estimate may be a chance finding due to statistical

uncertainty.
I Or it might be the result of truly negative correlation within

clusters - e.g. from competition (plants grown in same pot).

What can we do about it?
I Re-fit the model without the problematic random effect.
I Use a covariance pattern model which allows for negative

correlation (e.g. an unstructured covariance).
I Include more covariates at the lower levels.
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Estimated time-effect

Solution for Fixed Effects

Standard
Effect time Estimate Error DF t Value Pr > |t| Alpha Lower Upper
Intercept 0.4106 0.02209 448 18.59 <.0001 0.05 0.3672 0.4540
time morn 2.0137 0.02872 1305 70.12 <.0001 0.05 1.9573 2.0700
time even 0 . . . . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
time 1 1305 4916.89 <.0001

Estimates show that median levels of kortisol is about
exp(2.0137) ' 7.49 times higher in the morning than in the
evening.

We should account for exact time of measurement!
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Specification of linear mixed models (LMMs)
Mixed refers to mixed fixed and random effects.

Systematic variation
I covariates: time, treatment, gender, age, etc.,

describing population parameters.

Random variation:
I Random effects,

describing subject specific parameters.
I Serial correlation
I Measurement error

Interactions between systematic and random effects are always
random effects.
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Technical model description for LMMs

Model repeated outcomes on subject/cluster i as:

Yi = Xiβ + Zibi + εi

I Systematic effects β with designmatrices Xi .
I Random effects bi with designmatrices Zi .
I Possibly dependent residual error terms εi

We assume that the bi ’s and εi ’s are independent normally
distributed with mean zero and covariance matrices given by:

I The G-matrix: Var(bi) = G.
I The R-matrix: Var(εi) = R.
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Implied covariance for LMMs

The covariance of the repeated measurements on subject/cluster i
is given by the general formula:

Vi = ZT
i GZi + Ri

Note:
I This is the so-called V-matrix.
I Print with option vcorr in proc mixed.
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SAS: PROC MIXED

model: describes the mean value structure
(i.e. covariates / fixed effects)

random: describes the random effects
repeated: describes the residual covariance.

Very flexible modeling framework!

Example: It is possible to model, e.g.
I longitudinal series of measurements (2 levels) . . .
I with repeated series on each subject and with

different treatments along the way (3 levels) . . .
I and subjects belonging to different clusters (4 levels).
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Nonidentifiability

Warning: Make sure you understand your model!
I Modeling random effects together with a residual error

covariance may result in unidentifiable covariance parameters,
i.e. nonconvergence, unless done with some care.

Example: Compound symmetry can be specified as either of:
I RANDOM id;
I RANDOM intercept / SUBJECT=id;
I REPEATED time / TYPE=CS SUBJECT=id;

in case two of these lines are included in the same program, it will
not converge.
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Calcium data

The time course looks reasonably linear, but maybe the
individual girls have different growth rates . . .
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Random regression

We let each girl have her own level Ai and her own slope Bi

We assume these individual ’parameters’, Ai and Bi ,
I the random effects

follow a bivariate normal distribution in the population
(

Ai
Bi

)
∼ N2

((
αg(i)
βg(i)

)
,

(
τ2

a ωab
ωab τ2

b

))

The covariance is the so-called G-matrix:
I it describes the population variance of the lines,

i.e. the inter-individual variation.
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PROC MIXED: random regression

PROC MIXED DATA=calcium;
CLASS grp girl;
MODEL bmd=visit1 grp*visit1 / SOLUTION DDFM=SATTERTHWAITE;
RANDOM intercept visit1 / TYPE=UN SUBJECT=girl(grp) G;
RUN;

Individual intercepts and slopes must be specified in the
random-statement.

I Here visit is used as a continuous covariate, with the
intercept moved to visit=1. Due to randomization at
baseline the main effect of grp omitted so that intercepts are
the same in both groups.

I Note that type=un refers to a unstructured specification of
the G-matrix. If it is omitted, we may experience convergence
problems and sometimes totally incomprehensible results.45 / 80
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Output from random regression

Estimated G Matrix

Row Effect grp girl Col1 Col2
1 Intercept C 101 0.004155 0.000051
2 visit1 C 101 0.000051 0.000048

Covariance Parameter Estimates

Cov Parm Subject Estimate
Residual 0.000125

Fit Statistics

-2 Res Log Likelihood -2347.7
AIC (smaller is better) -2339.7

Solution for Fixed Effects

Effect grp Estimate StdError DF t Value Pr > |t|
Intercept 0.8752 0.006149 111 142.32 <.0001
visit1 0.02245 0.001097 96 20.46 <.0001
visit1*grp C 0.004429 0.001570 96.5 2.82 0.0058
visit1*grp P 0 . . . .

We find an extra increase in BMD of 0.0044 (0.0016) g/cm3

per half year, when giving calcium supplement.
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Implied covariance
The random regression model implies a particular covariance-
structure:

Cov(Yij ,Yik) = Cov(Ai + Bitj + εij ,Ai + Bitk + εik)
= Var(Ai) + (tj + tk)Cov(Bi ,Ai) + tjtkVar(Bi)
= τ2

a + (tj + tk)ωab + tjtkτ
2
b

I Option v and vcorr makes SAS print the V-matrix and the
associated correlation matrix.

Estimated V Matrix for girl(grp) 101 C

Row Col1 Col2 Col3 Col4 Col5

1 0.004280 0.004207 0.004258 0.004309 0.004360
2 0.004207 0.004430 0.004405 0.004503 0.004602
3 0.004258 0.004405 0.004676 0.004698 0.004844
4 0.004309 0.004503 0.004698 0.005017 0.005086
5 0.004360 0.004602 0.004844 0.005086 0.005453
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Nonequidistant time points

I The girls are only seen approximately twice a year.
I Perhaps we get better estimates of the slopes when

replacing visit with the actual age of the girl.
48 / 80



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Random regression, using actual age
Estimated G Matrix

Row Effect grp girl Col1 Col2
1 Intercept C 101 0.004208 0.000095
2 age11 C 101 0.000095 0.000179

Covariance Parameter Estimates

Cov Parm Subject Estimate
Residual 0.000124

Fit Statistics

-2 Res Log Likelihood -2356.3
AIC (smaller is better) -2348.3

Solution for Fixed Effects

Effect grp Estimate StdError DF t Value Pr > |t|
Intercept 0.8721 0.006193 111 140.84 <.0001
age11 0.04534 0.002151 96.2 21.08 <.0001
age11*grp C 0.008803 0.003074 96.8 2.86 0.0051
age11*grp P 0 . . . .

In this model, we quantify the effect of a calcium supplement to
0.0088 (0.0031) g/cm3 per year.
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Results from random regression

Time variable Difference in Slopes P-value
visit1 0.0089 (0.0031) 0.0051
age11 0.0044 (0.0016) 0.0058

P 0.37 0.0048
Seemingly steeper slopes than when visit was used as the
time-variable.

I Due to quantificantion (per year vs per 1/2 year)!

Note: In some cases replacing proxy age with exact age would result in steeper
slopes due to bias reduction (recall measurement error in the independent
variable causes bias towards the null).
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Modeling the covariance

Random regression implies a particular covariance pattern.
I Does this fit the data well?

No benchmark for model comparisons:
I An unstructured covariance cannot be esimated from

non-equidistant data!

Instead, non-nested models can be compared using Akaikes
information criterion (AIC) which balances goodness of fit against
model complexity.

I Smaller values of AIC indicates a better model fit.
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Non-equidistant covariance patterns

In case subject are measured at individual or otherwise non-equally
spaced time points only a limited number of stationary covariance
pattern models are available:

I The variance is constant over time.
I The correlation depend only on the time-distance between

the observations.

proc mixed Cov(Yij ,Yik) no.
type= param
CS σ2[I{j = k}+ ρ · I{j 6= k}] 2
SP(POW)(ctime) σ2ρ|tij−tik | 2
SP(GAU)(ctime) σ2e−|tij−tik |2/γ2 2
SP(LIN)(ctime) σ2(1− ρ|tik − tij |) · I{ρ|tik − tij | ≤ 1}] 2

The ctime-variable must be a numerical variable in SAS.
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Tests of treatment effect
Comparison of slopes for different covariance structures:

Covariance AIC Cov.par. Difference
structure in slopes P

Independence -1251.3 1 0.0094 (0.0086) 0.27

Compound symmetry -2253.9 2 0.0091 (0.0020) <0.0001

Power -2374.3 2 0.0099 (0.0030) 0.0014
(Autoregressive)

Random -2348.3 4 0.0088 (0.0031) 0.0051
Regression

I Confidence intervals and tests depend on the covariance!
53 / 80

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods
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Example: Cross-over study of headache

Patients with chronic headache are randomized into two groups:
I Both groups receive LNMMA and placebo, on two different

days, with a suitable wash-out period in-between
I Group G1 was treated first with placebo (period 1), and then

with LNMMA (period 2)
I Group G2 was treated first with LNMMA (period 1), and then

with placebo (period 2)

Pain was measured subjectively on a VAS-scale (small is good), at
baseline and at 30, 60, 90 and 120 minutes after treatment.

Ashina, Lassen, Bendtsen, Jensen og Olesen (1999), Lancet, pp.287-289
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Picture ignoring period effect and pairing
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Model building for cross over study

Fixed effect:
I time, treat treat*time, period
I possibly a carry-over effect: treat*period(*time)?

Covariance structure:
I We expect that observations from the same period (and same

patient) are more strongly correlated when they are close in
time, e.g.
RANDOM patient;
REPEATED time / TYPE=SP(POW)(time) LOCAL

SUBJECT=patient*period;
where LOCAL adds an additional measurement error.
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Extract data
Unfortunately, we do not have access to the full data with repeated
measurements over time.

New outcome: Difference between average follow-up
measurements and baseline,

Y30 + Y60 + Y120 − 3Y0

(recall, for this to be efficient the correlation must be strong).

Analysis Variable : effect

N
treat period Obs N Mean Std Dev
----------------------------------------------------------
lnmma 1 6 6 -28.5000000 40.9865832

2 10 10 -73.8000000 65.0022222

placebo 1 10 10 -20.3000000 41.5452899
2 6 6 -3.3333333 17.8063659

----------------------------------------------------------
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Observations vs. period and treatment
Legend: Group G1 (P+A), Group G2 (A+P)

Correlation looks reasonably strong.
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Average over patients
A, P denote the treatments, 1 and 2 denote the periods

Seemingly much larger treatment effect in period 2.
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Model for cross-over study

For subject i, treatment t and period p:

Ytpi = α+ βt + γp + δtp + bi + εtpi

I bi ∼ N (0, ω2
B) are the random subject effect

I εtpi ∼ N (0, σ2
W ) are the residuals

I δtp is the carry-over effect.

Parameter of interest: Treatment effect in period 1.
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Coded as a mixed effects model

PROC MIXED DATA=ashina;
CLASS patient group treat period;
MODEL effect=treat period treat*period / S CL DDFM=SATTERTH;
RANDOM intercept / SUBJECT=patient(group);

RUN;

Solution for Fixed Effects

Standard
Effect treat period Estimate Error DF t Value Pr > |t|
Intercept -3.3333 19.4487 14 -0.17 0.8664
treat lmmma -70.4667 24.6009 14 -2.86 0.0125
treat placebo 0 . . . .
period 1 -16.9667 24.6009 14 -0.69 0.5017
period 2 0 . . . .
treat*period lmmma 1 62.2667 40.8798 14 1.52 0.1500
treat*period lmmma 2 0 . . . .
treat*period placebo 1 0 . . . .
treat*period placebo 2 0 . . . .
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Interpretation of the carry-over effect

The carry-over effect is usually interpreted as an additional effect
of placebo when given after the active treatment.

Estimate 62.3, with 95% CI (−25.4, 149.9), i.e. nonsignificant.

The carry-over effect (placebo following active) has a positive
value, corresponding to a worsening of the headache.

This could be explained as a psychological effect, in the sense that
subjects expect something better (namely what they experienced in
the previous period).
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Traditional approach

First test the hypothesis H0 : δ = 0 (no carry-over effect):
I Unpaired T-test (G1 vs G2) with the sum of the two effects as

outcome, since the group means are:
I G1: 2α+ β + γ
I G2: 2α+ β + γ + δ

If this is accepted, test H1 : β = 0 (no treatment effect):
I Unpaired T-test (G1 vs G2) with the difference between the

two effects (P1-P2) as outcome, since the group means are:
I G1 (P+A): (α+ β + γ)− α = β + γ
I G2 (A+P): (α+ γ)− (α+ β) = γ − β

I And report the estimated treatment effect.

But what if there is a carry-over effect?
64 / 80



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Conclusion on treatment effect

Depends on your protocol!

Method Effect Confidence Interval P-value

Period 1 -8.20 (-53.99,37.59) 0.71
Period 2 -70.47 (-129.40,-11.55) 0.022
Joint? -39.33 (-68.70,-9.97) 0.012

?assuming no carry-over effect
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Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods
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Comparing measurement devices

Example: Peak expiratory flow rate, l/min:
I 17 subjects, 2 measurement devices, two replicates with each
method.

subject Wright mini Wright
id Y1p1 Y1p2 Y2p1 Y2p2
1 494 490 512 525
2 395 397 430 415
3 516 512 520 508
. . . . .
. . . . .
. . . . .

15 178 165 259 268
16 423 372 350 370
17 427 421 451 443

Average 450.35 445.41 452.47 455.35
SD 116.31 119.61 113.12 111.32

Reference: Bland and Altman, Lancet (1986).
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Illustration of all data
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Aim of investigation

Quantify the precision of each measuring device
I Variability / reproducibility.

Quantify the agreement between the two devices
I Bias of one method compared to the other.
I Variance of one method compared to the other.

Can the devices be used interchangably in clinic?
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Simple approaches

For reliability
I Compare the replicate measuements in Bland-Altman plots?

with limits of agreement, i.e.
I Plot of difference in measurements vs average of

measurements.
I 95% normal range for typical differences.

I for each method separately.

For method comparison
I Compare averages in a Bland-Altman plot?
I Not good - unless you also do averages in clinic!

? See: Bland & Altman, Lancet (1986).
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Variance component model?

level variation covariates
3 between subjects (σ2)
2 between methods (τ2) method
1 within methods (ω2)

Specified as:
Yijk = µj + Ai + Bij + εijk

I Ai ∼ N (0, σ2) for subjects i = 1, . . . , 17,
I Bij ∼ N (0, τ2) for methods j = 1, 2,
I εijk ∼ N (0, ω2) for replicate k = 1, 2.
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Implied covariance structure

I We have 4 measurements on each subject

Covariance matrix with ordering (wright1, wright2, mini1, mini2):




σ2 + τ2 + ω2 σ2 + τ2 σ2 σ2

σ2 + τ2 σ2 + τ2 + ω2 σ2 σ2

σ2 σ2 σ2 + τ2 + ω2 σ2 + τ2

σ2 σ2 σ2 + τ2 σ2 + τ2 + ω2




I We have stronger correlation between measurements made
with the same method than with different methods.

I And same variance for both methods.
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Analysis

PROC MIXED DATA=wright;
CLASS method id;
MODEL flow=method / SOLUTION CL;
RANDOM intercept method / SUBJECT=id;

RUN;

Solution for Fixed Effects

Standard
Effect method Estimate Error DF t Value Pr > |t|

Intercept 447.88 27.7519 16 16.14 <.0001
method mini 6.0294 8.0532 16 0.75 0.4649
method wright 0 . . . .

No evidence of systematic differences between the measurement
methods.
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Estimated variance components

Covariance Parameter Estimates
Cov Parm Subject Estimate
Intercept id 12542
method id 393.57
Residual 315.37

Fit Statistics
-2 Res Log Likelihood 676.0
AIC (smaller is better) 681.6

What does this tell us about the precision of the measurements?
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Typical differences

Between replicate measurements using the same method:

Yijk1 −Yijk2 = εijk1 − εijk2

∼ N (0, 2ω2)

Limits-of-agreement: ±2
√

2ω2 ' ±50.23.

Between measurements using the different methods:

Yij1k1 −Yij2k1 = µj1 − µj2 + Bij1 − Bij2 + εij1k1 − εij2k1

∼ N (µj1 − µj2 , 2τ2 + 2ω2)

Limits-of-agreement: µ1 − µ2 ± 2
√

2τ2 + 2ω2 ' 6.03± 75.31.

(where we include the non-significant systematic difference).
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Comparing precisions

We need a more general model:

Yijk = µj + Aij + εijk

I Ai ∼ N (0,Σ) for subjects i = 1, . . . , 17,
I εijk ∼ N (0, ω2

j ) for replicate k = 1, 2.

I bivariate random effect.
I method-dependent residual variance.
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Analysis

PROC MIXED DATA=wright;
CLASS method id;
MODEL flow=method / SOLUTION CL;
RANDOM method / TYPE=UN SUBJECT=id G;
REPEATED / TYPE=simple GROUP=method SUBJECT=id*method;
RUN;

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) id 12188
UN(2,1) id 12542
UN(2,2) id 13683
Residual method*id method mini 396.44
Residual method*id method wright 234.29

Fit Statistics

-2 Res Log Likelihood 673.8
AIC (smaller is better) 683.8

77 / 80

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Comparing precisions

Reproducibility (typical differences):
Wright: ω̂2

1 = 234.29 → ±2
√

2ω2
1 ' ±43.3

Mini: ω̂2
2 = 396.44 → ±2

√
2ω2

2 ' ±56.3

Seemingly Wright is more precise, but is the difference significant?

F = 396.44
234.29 = 1.69 ∼ F(17, 17)→ P = 0.14

Don’t form too firm a conclusion with too small data.
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Overall comparison

Solution for Fixed Effects

Standard
Effect method Estimate Error DF t Value Pr > |t|

Intercept 447.88 28.4914 32 15.72 <.0001
method mini 6.0294 8.0532 32 0.75 0.4595
method wright 0 . . . .

No evidence of systematic differences between the two methods.

Typical differnces between the two methods:

Yij1k1 −Yij2k1 = µj1 − µj2 + Aij1 −Aij2 + εij1k1 − εij2k1

∼ N (µj1 − µj2 , σ
2
1 + σ2

2 − 2σ12 + ω2
1 + ω2

2)

Limits-of-agreement: 6.0± 75.3 = (−69.3, 81.3).
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The end

I hope you have enjoyed the course!

Suggestions for improvements are warmly welcomed.
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