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Definition of epidemiology

Epidemiology is the science that studies the
patterns, causes, and effects of health and
disease conditions in defined populations.

Wikipedia, 2017
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Causality in epidemiology

• Does smoking cause lung cancer?
• Does red wine protect against cardiovascular disease?
• Does ADHD medication prevent traffic accidents?
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Causality in other fields

• How much of recent climate changes are due to human
greenhouse gas emission?
• Can we reduce criminality in society by employing more

police and/or punish convicted criminals harder?
• Why have extreme right-wing parties recently gained

popularity in many European countries?
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Conclusion

• Most scientific research questions are about cause and
effect
• In this sense, most research is ‘causal inference’
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Definition of ‘causal inference’

• A methodological branch of statistics, which aims to
• establish a formal (mathematical) language for causal

reasoning - done
• use this language to develop appropriate statistical

methods for making causal inference - ongoing
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The language

• Potential outcomes
• an algebraic tool to define causal parameters

• Direct Acyclic Graphs (DAGs)
• a visual tool to derive appropriate analysis for estimating

causal parameters
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The statistical methods

• Instrumental variables
• Mediation analysis
• Interaction analysis
• Propensity scores
• Inverse probability weighting
• Marginal structural models
• Structural nested models
• ... and many others!
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Due to ...

Donald Rubin (Harvard
University)

James Robins (Harvard School
of Public Health)
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Example

• Research question: does smoking during pregnancy (X )
cause malformations in the offspring (Y )?
• Data:

id X Y
1 1 0
2 1 1
3 0 1

• Is there a statistical association between smoking and
malformations?
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Solution

id X Y
1 1 0
2 1 1
3 0 1

• Malformations in offspring are more common among
non-smokers than among smokers
• An inverse association!

RR =
p(Y = 1|X = 1)
p(Y = 1|X = 0)

=
1/2
1/1

= 0.5
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Example

id X Y
1 1 0
2 1 1
3 0 1

• Sampling variability aside, can we say that smoking
protects against malformations?
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Solution

id X Y
1 1 0
2 1 1
3 0 1

• No!
• The smokers may be systematically different than the

non-smokers
• e.g. younger, more physically active, healthier diet etc

• ‘Confounding’
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What is the target parameter?

• Clearly, the associational risk ratio

RR =
p(Y = 1|X = 1)
p(Y = 1|X = 0)

is not the causal target parameter
• In fact, ‘standard’ statistical language cannot be used to

define causal parameters
• Without a proper definition of the target parameter, we

can’t be sure that we use an appropriate analysis
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Towards a causal target parameter

• The associational risk ratio

RR =
p(Y = 1|X = 1)
p(Y = 1|X = 0)

compares ‘apples with pears’
• the people in the numerator (smokers) are not the same

people as those in the denominator (non-smokers)
• To avoid systematic differences, a causal parameter must

compare ‘apples with apples’
• same people in numerator and denominator
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Potential outcomes

• We think of each subject as having two potential
outcomes
• Y0 = the outcome if the subject would hypothetically be

unexposed (e.g. would not smoke)
• Y1 = the outcome if the subject would hypothetically be

exposed (e.g. would smoke)

id Y0 Y1
1 0 0
2 0 1
3 1 1
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The causal risk ratio

id Y0 Y1
1 0 0
2 0 1
3 1 1

• We define the causal risk ratio as a comparison of two
hypothetical scenarios
• everybody unexposed, vs
• everybody exposed

CRR =
p(Y1 = 1)
p(Y0 = 1)

=
2/3
1/3

= 2
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Association vs causation
• Association:

Factually unexposed Factually exposed

p(Y = 1|X = 0) vs p(Y = 1|X = 1)
• Causation:

Everybody unexposed Everybody exposed

p(Y0 = 1) vs p(Y1 = 1)
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Ideal vs real data

• Ideally, we could observe both potential outcomes for any
given subject
• In reality, we can only observe one of them - the one that

corresponds to the factual exposure level for that subject
• The other is unobserved - or counterfactual

id X Y Y0 Y1
1 1 0 ? (0) 0
2 1 1 ? (0) 1
3 0 1 1 ? (1)
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Want to do this...

Everybody unexposed Everybody exposed

p(Y0 = 1) vs p(Y1 = 1)

• No systematic differences
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...but can only do this

Factually unexposed Factually exposed

p(Y = 1|X = 0) vs p(Y = 1|X = 1)

• Systematic differences
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Solution

• Try to eliminate systematic differences between exposed
and unexposed, so that association = causation
• By design: randomization
• By analysis: confounding control
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Randomization

• Assign exposure levels by the flip of a coin
• Removes all systematic differences between exposed and

unexposed: association = causation!
• Practical problems:

• unethical
• expensive
• difficult
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Confounding control

• Control for measured confounders in the statistical analysis

• stratification
• matching
• regression modelling
• propensity scores
• inverse probability weighting
• etc etc etc

• Only removes systematic differences due to confounders
that we explicitly control for
• Systematic differences may remain, due to unmeasured

confounders: association = causation?
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What to control for?

• Often, we have measured a large set of variables, which
we could potentially control for in the analysis
• e.g. register-based research

• Which of these should we control for?
• Are there any variables we should not control for?
• Enter DAGs!
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But really, what has been gained?

• We may define the causal effect, using potential outcomes,
as

CRR =
p(Y1 = 1)
p(Y0 = 1)

• But all we can ever observe is a statistical association

RR =
p(Y = 1|X = 1)
p(Y = 1|X = 0)

• Even if potential outcomes may add conceptual clarity, one
may question if they have any practical value
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More complex scenarios

• Potential outcomes have proven extremely useful in more
complex scenarios
• Instrumental variable studies
• Studies of mediation and interaction
• Longitudinal studies with time-varying exposures and

confounders
• In these scenarios, there is not one, but several possible

causal target parameters
• Without a proper definition of the target parameter, we

can’t be sure that we use an appropriate analysis
• Largely overlooked in ‘standard’ statistical literature, not

using potential outcomes
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Due to ...

Judea Pearl (UCLA)
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A simple DAG

Z

�� ��
X // Y

• Each arrow represents a causal effect
• The graph is

• Directed, since each connection between two variables
consists of an arrow

• Acyclic, since the graph contains no directed cycles
• Formal connection to potential outcomes through

non-parametric structural equations
• beyond this seminar
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Causal and non-causal paths

Z

�� ��
X // Y

• There are two paths between X and Y :
• X → Y
• X ← Z → Y

• Only the first path is causal
• if we remove the arrow from X to Y , then X has no causal

effect on Y
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Confounding in DAGs

Z

�� ��
X // Y

• The variable Z is a common cause of the exposure X and
the outcome Y - a confounder
• The non-causal path X ← Z → Y induces a statistical

association between X and Y
• even in the absence of the causal effect X → Y
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Randomization in DAGs

Z
??

�� ��
X // Y

• Randomization breaks the influence of Z on X
• Thus, the non-causal path X ← Z → Y no longer exists

• ... and no other non-causal paths either
• Association = causation
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DAGs can be used for confounder selection

• 1. Use subject matter knowledge to draw the DAG (by no
means trivial!)
• 2. Use simple graphical rules to determine what to control

for
• attempt to ‘block’ non-causal paths between the exposure

and the outcome
• if all non-causal paths are blocked, then association =

causation
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Example

socioeconomic status

�� ))

// age

((��

family history

��
smoking //

))

22diet // malformation

vv
birth status
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No a priori knowledge

• Cannot construct a plausible DAG

soc status/education age family history

smoking diet malformation

birth status

• Ok... but are you really the right person to do this study?
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Weak a priori knowledge
• Cannot settle with one plausible DAG

soc status/education

�� ))

// age

((��

family history

��
smoking //

))

22diet // malformation

vv
birth status

soc status/education

�� ))

// age

((��

family history

��
smoking

))

22dietoo // malformation

vv
birth status

• Present all plausible DAGs, and the implied analyses
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Summary

• Causal inference has been an intense research field the
last ∼30 years
• It has generated many new methods and countless papers
• Much of this success can be attributed to the development

of a formal causal language
• enables proper definitions of causal parameters
• can be used to derive appropriate analyses for estimating

causal parameters
• The key elements in this language are potential outcomes

and DAGs
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Read more

• Pearl, J (2009). Causality. Cambridge University Press
(2nd edition).
• Judea Pearl’s home page (search for ‘introduction’)
• Hernan MA, Robins JM (2018). Causal Inference. Boca

Raton: Chapman & Hall/CRC, forthcoming.
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