LEADER

Liraglutide and cardiovascular outcomes in type 2 diabetes

Presented at DSBS seminar on mediation analysis August 18th

Søren Rasmussen, Novo Nordisk

LEADER CV outcome study

- To determine the effect and safety of liraglutide on cardiovascular outcomes in adults with T2DM that are at high risk for cardiovascular events.
- To assess the efficacy and safety with regard to clinically important events or other surrogate parameters of treatment with liraglutide compared to placebo in adults with T2DM that are at high risk for cardiovascular events.

For slide template preparation only - not actual data

Background

Guidance for Industry Diabetes Mellitus — Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes

U.S. Department of Heith and Haman Services Food and Drug Administration Center for Drug Evolution and Hessarch (CDEB) December 2009 Classical Medical

June 2007

"Rosiglitazone was associated with a significant increase in the risk of myocardial infarction..."

Dec 2008

New FDA Guidance issued Implication for liraglutide Retrospectively compare incidence of Major Adverse Cardiovascular Events (MACE) between liraglutide and the total comparator

Jun 2009, Jan 2010

Victoza approved by EMA and FDA.

The LEADER[®] trial

(Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results) is a compelling scientific opportunity that will provide new data about the GLP-1 analogue, liraglutide, and its effect on cardiovascular outcomes.

The LEADER[®] trial is a long-term, multi-centre, international, randomised, double-blind trial to compare liraglutide with placebo in addition to the current standard of care for type 2 diabetes. The trial will enrol 9,000 patients in more than 30 countries.

Main effects of long-acting GLP-1R agonists including liraglutide

Examples of ongoing pre- and postapproval outcome studies*.

Trial name	Drug	Primary end point	No. of subjects (length of study in years)
EXAMINE	Alogliptin	MACE	5,400 (5)
CANVAS	Canagliflozin	MACE	4,500 (4)
CAROLINA	Linagliptin	MACE + unstable angina	6,000 (7)
ALECARDIO	Aleglitazar	MACE	6,000 ACS (4.5)
TECOS	Sitagliptin	MACE + unstable angina	14,000 (5)
SAVOR	Saxagliptin	MACE	16,500 (5)
EXSCEL	Exenatide LAR	MACE	12,000 (5.5)
LEADER	Liraglutide	MACE	9,000

ACS, acute coronary syndrome; CANVAS, CANagliflozin cardioVascular Assessment Study; EXAMINE, Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome; EXSCEL, EXenatide Study of Cardiovascular Event Lowering; LAR, long-acting release; TECOS, A Randomized, Placebo Controlled Clinical Trial to Evaluate Cardiovascular Outcomes after Treatment with Sitagliptin in Patients with Type 2 Diabetes Mellitus and Inadequate Glycemic Control. *Accessed through http://www. clinicaltrials.gov/.

Boaz Hirshberg, and Arie Katz Dia Care 2013;36:S253-S258

CI, confidence interval; CV, cardiovascular; HR, hazard ratio; MI, myocardial infarction; UAP, unstable angina pectoris. Sciria et al. N Engl J Med 2013 Oct 3;369(14):1317-26; Zinman et al. N Engl J Med 2015;373:2117-28; Pfeffer et al. N Engl J Med 2015;373(23):2247-57;

LEADER: Study design

- Use of GLP-1RAs, DPP-4i, pramlintide, or rapid-acting insulin
 - Familial or personal history of MEN-2 or MTC

• Age ≥60 years and risk factors for CV disease

• Antidiabetic drug naïve; OADs and/or basal/premix insulin

Age ≥50 years and established CV disease or chronic renal

failure

or

CV: cardiovascular; DPP-4i, dipeptidyl peptidase-4 inhibitor; GLP-1RA: glucagon-like peptide-1 receptor agonist; HbA_{1c}: glycated hemoglobin; MEN-2: multiple endocrine neoplasia type 2; MTC: medullary thyroid cancer; OAD: oral antidiabetic drug; OD: once daily; T2DM: type 2 diabetes mellitus.

Primary and key secondary outcomes

	Time to first occurrence of 3-point MACE composed of		
Primary	CV death		
outcome	Non-fatal MI		
	Non-fatal stroke		

	Time to first occurrence of
Key secondary outcomes	 Expanded composite CV outcome (CV death, non-fatal MI, non-fatal stroke, coronary revascularization, unstable angina pectoris requiring hospitalization, or hospitalization for heart failure)
	All-cause death
	Each individual component of expanded composite CV outcome

CV: cardiovascular; MACE: major adverse cardiovascular event; MI: myocardial infarction.

Event adjudication

*Requiring hospitalization. ACS: acute coronary syndrome.

LEADER standard of care guidelines

	Treatment/Guideline		
Blood glucose	 HbA_{1c} ≤7.0% (individualized depending on patient) 		
Blood pressure	Target: 130/80 mmHg		
Lipids	 Target LDL: <100 mg/dL (<70 mg/dL in patients with previous CV events) Statins: recommended for all patients 		
Antiplatelet therapy	 Aspirin or clopidogrel (if aspirin intolerant) for patients with prior CV events (MI, CVA, or revascularization) 		

CV: cardiovascular; CVA: cerebrovascular accident; HbA_{1c}: glycated hemoglobin; LDL: low-density lipoprotein; MI: myocardial infarction.

LEADER: A Global Trial

Study patient disposition

FAS: full analysis set.

Liraglutide Effect and Action in Diabetes:

Evaluation of cardiovascular outcome Results

Baseline characteristics

(mean ± SD unless stated)

	Liraglutide (N=4668)	Placebo (N=4672)
Male sex, N (%)	3011 (64.5)	2992 (64.0)
Age, years	64.2 ± 7.2	64.4 ± 7.2
Diabetes duration, years	12.8 ± 8.0	12.9 ± 8.1
HbA _{1c} , %	8.7 ± 1.6	8.7 ± 1.5
BMI, kg/m²	32.5 ± 6.3	32.5 ± 6.3
Body weight, kg	91.9 ±21.2	91.6 ± 20.8
Systolic blood pressure, mmHg	135.9 ± 17.8	135.9 ± 17.7
Diastolic blood pressure, mmHg	77.2 ± 10.3	77.0 ± 10.1
Heart failure*, N (%)	835 (17.9)	832 (17.8)

*Heart failure includes New York Heart Association class I, II and III. BMI: body mass index; HbA_{1c}: glycated hemoglobin.

Baseline cardiovascular risk profile

	Liraglutide (N=4668)	Placebo (N=4672)
Established CVD/CKD (age ≥50 years)	3831 (82.1)	3767 (80.6)
Prior myocardial infarction	1464 (31.4)	1400 (30.0)
Prior stroke or prior TIA	730 (15.6)	777 (16.6)
Prior revascularization	1835 (39.3)	1803 (38.6)
>50% stenosis of coronary, carotid, or lower extremity arteries	1188 (25.4)	1191 (25.5)
Documented symptomatic CHD	412 (8.8)	406 (8.7)
Documented asymptomatic cardiac ischemia	1241 (26.6)	1231 (26.3)
Chronic heart failure NYHA II – III	653 (14.0)	652 (14.0)
Chronic kidney disease (eGFR <60 mL/min/1.73m ²)	1185 (25.4)	1122 (24.0)

Data are number of patients (%).

)ER®

Liraglutide Effect and Action in Diabetes:

Evaluation of cardiovascular outcome Results

CHD: coronary heart disease; CKD: chronic kidney disease; CVD: cardiovascular disease; eGFR: estimated glomerular filtration rate; NYHA: New York Heart Association; TIA: transient ischemic attack.

Baseline cardiovascular risk profile

	Liraglutide (N=4668)	Placebo (N=4672)
CVD risk factors (age ≥60 years)	837 (17.9)	905 (19.4)
Microalbuminuria or proteinuria	501 (10.7)	558 (11.9)
Hypertension and left ventricular hypertrophy	248 (5.3)	251 (5.4)
Left ventricular systolic or diastolic dysfunction	203 (4.3)	191 (4.1)
Ankle/brachial index <0.9	110 (2.4)	116 (2.5)

Data are number of patients (%). CVD: cardiovascular disease.

Trial follow-up and drug exposure

	Liraglutide	Placebo
Median follow-up (years)	3.84	3.84
Median time of exposure to study medication (years)	3.52	3.52
Mean proportion of time on study drug (%)*	84.0	83.0
Median (IQR) daily dose of liraglutide (mg) [†]	1.78 (1.54–1.79)	_

*Excluding pre-scheduled 30 day off-treatment follow-up period. †Including off-treatment periods. IQR: interguartile range.

Efficacy parameters potential mediators

HbA_{1c}

Data are estimated mean values from randomization to month 48.

CI: confidence interval; ETD: estimated treatment difference; HbA_{1c}: glycated hemoglobin.

Body weight

Data are estimated mean values from randomization to last scheduled visit for body weight measurement (month 48). CI: confidence interval; ETD: estimated treatment difference.

Blood pressure

Data are estimated mean values from randomization to last scheduled visit for blood pressure measurement (month 48). CI: confidence interval; DBP: diastolic blood pressure; ETD: estimated treatment difference; SBP: systolic blood pressure.

Heart rate

Data are estimated mean values from randomization to last scheduled visit for heart rate measurement (month 48). Bpm: beats per minute; CI: confidence interval; ETD: estimated treatment difference.

Cholesterol

Data are observed geometric mean values from randomization to last scheduled visit for LDL and HDL cholesterol measurement (month 48). CI: confidence interval; ETD: estimated treatment difference; LDL: low-density lipoprotein; HDL: high-density lipoprotein.

Primary outcome

CV: cardiovascular; MACE: major adverse cardiovascular event; MI: myocardial infarction.

Confirmatory statistical analysis

Primary statistical analysis	Cox proportional hazard model with treatment as a covariate
Test hierarchy	 1. Test of non-inferiority Confirmed if upper bound of the 2-sided 95% CI of the hazard ratio is below 1.30
for the primary outcome	 2. Test of superiority Confirmed if upper bound of the 2-sided 95% CI of the hazard ratio is below 1.00

CI: confidence interval; CV: cardiovascular; MACE: major adverse cardiovascular event; MI: myocardial infarction.

Primary outcome

CV death, non-fatal myocardial infarction, or non-fatal stroke

The primary composite outcome in the time-to-event analysis was the first occurrence of death from cardiovascular causes, non-fatal myocardial infarction, or non-fatal stroke. The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

Primary outcome: Sensitivity analysis

		Lirag		giutide	Fla	lacebo	
		Hazard ratio (95% CI)	Ν	%	Ν	%	
Number of patients (FAS)			4668	100.0	4672	100.0	
Number of patients (PP)			4657	100.0	4664	100.0	
Primary analysis (FAS)	⊢ •→	0.87 (0.78–0.97)	608	13.0	694	14.9	
Sensitivity analysis							
Per protocol (PP)	⊢ •→-	0.85 (0.75–0.96)	498	10.7	577	12.4	
On treatment	⊢ →	0.83 (0.73–0.95)	443	9.5	520	11.1	
On treatment + 30 days	⊢ ← → ↓	0.82 (0.73–0.93)	480	10.3	571	12.2	
Excluding events after Visit 15	⊢ •−−1	0.86 (0.77–0.96)	598	12.8	690	14.8	
Adjusted for additional covariates	⊢ •→-	0.87 (0.78–0.97)	605	13.0	692	14.8	
Adjusted for random country effect	⊢ •−−1	0.86 (0.77–0.96)	605	13.0	692	14.8	
Stratified for severe renal impairment	⊢ •→-	0.87 (0.78–0.97)	608	13.0	694	14.9	
	Hazard ratio (95% C	1.2 I) avors Placebo					

Lizzalutido

Diacoho

Analyzed using Cox proportional hazard regression with treatment as a fixed factor. FAS: full analysis set; PP: per protocol.

Time to first event analysis

CV death

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

Time to non-fatal myocardial infarction

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.

Time to non-fatal stroke

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.

Subgroup analyses of the primary outcome

Primary outcome: Subgroup analyses

		Hazard ratio	p-value for	No. of	Liraglutide	Placebo
Subgroup		(95% CI)	interaction	patients	no. of events/no	o. of patients (%)
Primary analysis	⊢♠┥	0.87 (0.78–0.97)		9340	608/4668(13.0)	694/4672(14.9)
Sex			0.84			
Female	⊢ ♦ ↓ I	0.88 (0.72–1.08)		3337	183/1657(11.0)	209/1680(12.4)
Male	⊢◆⊣	0.86 (0.75-0.98)		6003	425/3011(14.1)	485/2992(16.2)
Age			0.27			
<60 years		0.78 (0.62–0.97)		2321	140/1197(11.7)	166/1124(14.8)
>/= 60 years	⊢♠╢	0.90 (0.79-1.02)		7019	468/3471(13.5)	528/3548(14.9)
Geographic region			0.20			
Europe	⊢_♠	0.82 (0.68–0.98)		3296	207/1639(12.6)	252/1657 (15.2)
North America	⊢,	1.01 (0.84–1.22)		2847	212/1401(15.1)	216/1446(14.9)
Asia	⊢ → ↓	0.62 (0.37-1.04)		711	24/360 (6.7)	37/351 (10.5)
Rest of the world	⊢ ♦ 	0.83 (0.68–1.03)		2486	165/1268(13.0)	189/1218(15.5)
Race			0.32			
White	⊢♠╢	0.90 (0.80-1.02)		7238	494/3616(13.7)	543/3622(15.0)
Black or African American	⊢♦_	0.87 (0.59–1.27)		777	47/370 (12.7)	59/407 (14.5)
Asian	⊢ +	0.70 (0.46-1.04)		936	40/471 (8.5)	56/465 (12.0)
Other	⊢	0.61 (0.37-1.00)		389	27/211 (12.8)	36/178 (20.2)
Ethnic group			0.30			
Hispanic or Latino	⊢ ◆ I	0.74 (0.54–1.02)		1134	68/580 (11.7)	86/554 (15.5)
Not Hispanic or Latino	⊢♠┥	0.89 (0.79–1.00)		8206	540/4088(13.2)	608/4118(14.8)
Body mass index			0.15			
=30 kg/m<sup 2	⊢.	0.96 (0.81–1.15)		3574	241/1743(13.8)	261/1831(14.3)
>30 kg/m ²		0.82 (0.71–0.94)		5757	367/2920(12.6)	431/2837(15.2)
LEADER [®] ^{0.2}	Hazard ratio ¹ (95% CI) ²				were performed for subgroup rdiovascular causes, nonfat	

Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24, June 13 2016, New Orleans, LA, USA.

Liraglutide Effect and Action in Diabetes:

Evaluation of cardiovascular outcome Results

Prespecified Cox proportional-hazard regression analyses were performed for subgroups of patients with respect to the primary outcome (first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke). P values signify tests of homogeneity for between-group differences with no adjustment for multiple testing. The percentages of patients with a first primary outcome between the randomization date and the date of last follow-up are shown. Race or ethnic group was self-reported. CI: confidence interval.

Expanded MACE All-cause death Hospitalization for HF

Expanded MACE

CV death, non-fatal MI, non-fatal stroke, coronary revascularization, or hospitalization for unstable angina pectoris or heart failure

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio; MACE: major adverse cardiovascular event; MI: myocardial infarction.

All-cause death

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportionalhazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.

Hospitalization for heart failure

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportionalhazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.
Mediation analysis

perspectives in CV outcome studies

Mediation analysis

In mediation, we consider an intermediate variable, called the *mediator*, that helps explain how or why an independent variable influences an outcome. In the context of a treatment study, it is often of great interest to identify and study the mechanisms by which an intervention achieves its effect.

With mediation analysis, we gain insight and acquire understanding about the mechanism of action of pharmacological treatments.....

Objective of the mediation analyses

• To explore how the positive effect of liraglutide on CV outcomes is influenced by effects through the trial

A:exposure, M: Mediator, C: confounder, Y: outcome

$\textbf{HbA}_{\textbf{1c}}$

novo nordisk[®]

Data are estimated mean values from randomization to month 48. CI: confidence interval; ETD: estimated treatment difference; HbA₁₀: glycated hemoglobin.

Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA.

Mode of action - cardiovascular outcome

Ussher JR, Drucker DJ. Circ Res 2014;114:1788-803.

Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results

Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA.

Objectives (cont.)

- Which variables mediates the effect of liraglutide?
 - How much of the effect of liraglutide on first MACE is mediated by e.g. reduction in HbA1c from baseline
- Insight in "mode of action" ~ how can the CV protective effect be explained?
 - which variables mediates the effect of treatment?
 - are the variables related to mode of action
- "Acute effect" versus "chronic effect"
 - How to differentiate (if possible)
 - Change from baseline <> absolute (mean) values

Limitations

- There is no unified approach for assessing mediation
 - Wanderweele & Lange
 - Based on counterfactual approach as seen in works from Pearl / Robbins
- Estimation cannot be employed in standard software without doing advanced programming
 - SAS macros
- Computation of confidence intervals are quite cumbersome (and somehow approximate)
 - Delta methods
 - Bootstrapping
 - MCMC?
- Cox regression in mediation analysis
 - Rare event assumption; proportion of events < 10 %
 - LEADER; primary outcome: 14% Components of primary outcome: < 10%

Direct and indirect effect – counterfactual approach

- Natural direct effects (NDE) is the effect of changing the exposure relative to the direct pathway, but keeping exposure constant relative to the indirect pathway through the mediator; i.e. Y_L (M_p) versus Y_P (M_p)
- Natural indirect effects (NIE) is the effect of changing the exposure relative to the indirect pathway, but keeping exposure constant relative to the direct pathway; i.e. Y_L (M_L) vs. Y_L (M_P)
- Total effects (TE) denotes the effect of changing the exposure; that is comparing Y_L (M_L) vs. Y_P (M_P)

Proportion mediated

- Total effect equals the natural indirect effect + natural direct effect
- Proportion (%) mediated:
 - Indirect effect / total effect *100%
 - Quite complicated formulas according to the type of regression applied
 - Example; Cox regression with a continuous mediator

$$\log \left\{ \lambda_{\tau_{aM_a}}(t|c) \right\} - \log \left\{ \lambda_{\tau_{aM_{a^*}}}(t|c) \right\} = (\gamma_2 \beta_1 + \gamma_3 \beta_1 a) (a - a^*)$$

$$\log \left\{ \lambda_{\tau_{aM_{a^*}}}(t|c) \right\} - \log \left\{ \lambda_{\tau_{a^*M_{a^*}}}(t|c) \right\} = \left\{ \gamma_1 + \gamma_3 \left(\beta_0 + \beta_1 a^* + \beta_2' c + \gamma_2 \sigma^2 \right) \right\} (a - a^*) + 0.5 \gamma_3^2 \sigma^2 \left(a^2 - a^{*2} \right)$$

VanderWeele. T.J. (2015). Explanation in Causal Inference: Methods for Mediation and Interaction,

Challenges in LEADER study

- Cox regression
 - The preferred regression method
- Time varying mediators
 - e.g. HbA1c at different visits
- Time varying confounders
 - e.g. concomitant medication (start and stop dates)
- Interactions
 - Modifications of mediators by exposure

A simple setup of an mediator analysis - 1

- Change in HbA1c until visit 60 (6 months) as mediator
- Events before the actual visit is censored
 - To keep the direction in the causality
 - <100 events censored due to this
 - Baseline measurements is entered as a covariate
- Variables of interest
 - Direct effect attenuated ~ HR towards 1 ?
 - High proportion mediated ?

A simple setup of an mediator analysis - 2

- Change in HbA1c until event/censoring as mediator
 - May be interpreted as an 'acute effect'
 - Baseline as confounder
- <Weighted> mean of HbA1c until event/censoring as mediator
 - May be interpreted as an 'chronic effect'
- Variables of interest
 - Direct effect attenuated ~ HR towards 1 ?
 - High proportion mediated ?

Summary

- Liraglutide associated with CV benefits
- Mediation analysis can potentially support suggestions for biological pathways
 - Mode of action
 - Only variables measured can be used
- No unified approach yet established
- Looking forward to the next presentations!

