EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

Faculty of Health Sciences

Plan

Today: Introduction and longitudinal data analysis.

- ▶ Basic concepts for correlated and clustered data.
- Analysis of response profiles.
- Baseline adjustment for randomized trials
- Covariance pattern models.

Tomorrow: Linear mixed models in general.

- Random effects and variance components
- Multi-level models for clustered data.
- Cross-over trials.

Outline

Introduction

Basics of longitudinal data (FLW:2011, ch. 1-2)

_inear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

SAS proc mixed (FLW:2011, ch. 5.9)

Baseline adjustment (FLW:2011, ch. 5.6-5.7)

Covariance pattern models (FLW:2011, ch. 7)

Practicalities

4/78

Lectures in the morning (9.15–12.00)

 Linear mixed models for repeated measurements and clustered data.

Computer labs the afternoon (13.00-15.45)

► Data analysis with SAS PROC MIXED

Note: Some of the datasets we use in our case studies are in fact too small to yield interesting conclusion. But due to their small size they are useful for illustrative purposes.

Recommended reading

Lecture notes, exercises etc

► Found at the course webpages

The book:

 G.M. Fitzmaurice, N.M. Laird & J.H. Ware : *Applied Longitudinal Analysis (2nd edition)*, John Wiley & sons, 2011

Additional examples in SAS, R and Stata can be found at:

www.biostat.harvard.edu/fitzmaur/ala2e

What are repeated measurements?

Repeated measurements refer to data where the same outcome has been measured in different situations (or at different spots) on the same individuals.

► Special case: longitudinal means repeatedly over time.

What is clustered data?

Repeated measurements are termed **clustered data** when the same outcome is measured **on groups of individuals** from the same families/workplaces/school classes/clinics/etc.

Why do we need special models for rep. measurements?

The **general linear model (GLM)** assume that observations are **independent**. If you have clustered or repeated measurements the assumption of independence is **violated**.

Ignoring the repetitions/clustering would lead to invalid inference:

- p-values that are too small or too large.
- confidence intervals that are too wide or too narrow.

Change in enegy intake (kJ) pre- to post-menstrually in $11 \mbox{ women}.$

Analysis	Estimate (95% CI)	P-value
paired t-test	1320 (1074;1567)	0.000003
two-sample t-test	1320 (271; 2370)	0.01625

Outline

Introduction

Basics of longitudinal data (FLW:2011, ch. 1-2)

Linear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

SAS proc mixed (FLW:2011, ch. 5.9)

```
Baseline adjustment (FLW:2011, ch. 5.6-5.7)
```

Covariance pattern models (FLW:2011, ch. 7)

Typical set-up for longitudinal measurements

Two or more groups of subjects

- Often receiving different treatments
- Possibly randomised at baseline.

Longitudinal measurements of the same quantity over time for each subject, typically as a function of

- ▶ time (i.e. duration of treatment)
- ► age

12/78

cumulative dose of drug

Do the time courses differ between the groups?

9/73 10/78 VERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN

Case study: Eplerenone

Response: Augmentation index (aix) in patients with CKD.

- Comparison of novel treatment to standard.
- ▶ Follow-up after 12 and 24 weeks.

Merits of longitudinal studies

In longitudinal studies measurements are taken repeatedly on the same subjects over time.

- This allows us to study changes over time within subjects and factors that influence these changes, e.g. treatment.
- By comparing each individuals responses at two or more occations we eliminate extraneuous but unavoidable sources of variabitlity among individuals. Thus we obtain more accurate estimates and more certain conclusions about changes over time than in cross-sectional studies.

Longitudinal vs cross sectional effect

Example: Reading ability, as a function of age and cohort:

Unbalanced and incomplete data

In a planned study the times of measurements will usually be the same for all subjects. We have a balanced design

In practice data is most often somewhat unbalanced due to drop-out, missed visits, failed measurements.

- ► In this case we say that data is incomplete.
- But the design is still balanced.

Data from (retro-spective) observational studies are most often unbalanced both by design and in practice.

Outline

Introduction

Basics of longitudinal data (FLW:2011, ch. 1-2)

Linear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

SAS proc mixed (FLW:2011, ch. 5.9)

Baseline adjustment (FLW:2011, ch. 5.6-5.7)

Covariance pattern models (FLW:2011, ch. 7)

Notation

14/78

16/78

Longitudinal data is described as:

- Subjects $i = 1, \ldots, N$.
- Observations Y_{i1}, \ldots, Y_{in_i} (from subject *i*).
- Taken at occations t_{i1}, \ldots, t_{in_i} (for subject *i*).
- Possibly additional covariates X_{ij2},..., X_{ijp} (for subject *i* at occation *j*).

Convention: Subscripts i are dropped when occations t_1, \ldots, t_n are the same for all subjects.

The distribution of repeated outcomes

Repeated measurements Y_{i1}, \ldots, Y_{in_i} are characterized by being

mutually dependent or correlated.

We need to characterize their joint distribution.

Standard model for quantitative data: The multivariate normal

- Location: mean-vector
- ► Variability: covariance-matrix

Main interest is in modeling the mean.

BUT: We also need to model the covariance in order to account for it in the analyses.

Notation

Denote mean and variance of the normal distribution by:

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \vdots & \vdots & & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}$$

The correlation matrix is

(1	ρ_{12}		ρ_{1n}
	ρ_{21}	1	•••	ρ_{2n}
	÷	÷		÷
	ρ_{n1}	ρ_{n2}	•••	1

where $\rho_{jk} = \operatorname{Cor}(Y_j, Y_k) = \frac{\sigma_{jk}}{\sigma_j \sigma_k}$.

UNIVERSITY OF COPENHAGE

17 / 78

Modeling the mean

Models for the mean are specified just as in GLM.

- including covariates that can be both cathegorical and continuous.
- \blacktriangleright E.g. treatment, gender, and age.

The time-effect is always included.

- As a factor
- or as a linear/polynomial trend.

Note that covariates are allowed to change with time.

The linear model for longitudinal data Assume a linear model for the response-**vectors**:

$$Y_i = X_i \cdot \beta + \varepsilon_i$$

I.e.

$$\begin{pmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{in} \end{pmatrix} = \begin{pmatrix} X_{i11} & X_{i12} & \dots & X_{i1p} \\ X_{i21} & X_{i22} & \dots & X_{i2p} \\ \vdots & \vdots & & \vdots \\ X_{in1} & X_{in2} & \dots & X_{inp} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \vdots \\ \varepsilon_{in} \end{pmatrix}$$

- Where X_i is the $n \times p$ design-matrix for subject i.
- ► Error terms are multivariate normal ε_i ~ N_n(0, Σ) For now we assume the covariance Σ is the same for all subjects, but we could have different Σ's for groups

Modeling the covariance

Several possibilitites.

Unstructured covariance

- One variance parameter for each time point
- One correlation parameter for each pair of time points
- $n + \frac{n(n-1)}{2}$ parameters in total with n time points.

Fully flexible because no assumptions are made about the covariance as a function of time.

Covariance pattern models

- Models borrowed from time series analysis. Make use of the time ordering to describe covariance with fewer parameters.
- ► Variance component models (tomorrow).

Must be chosen with care due to risk of misspecification.

NIVERSITY OF COPENHAGEN

Generalized least squares (GLS)

Suppose a known covariance Σ_0 is known, then the MLE for β is

 $\bullet \ \hat{\beta} = \left\{ \sum_{i=1}^{N} (X_i^T \Sigma_0^{-1} X_i) \right\}^{-1} \sum_{i=1}^{N} X_i^T \Sigma_0^{-1} Y_i$

This estimate is unbiased even if $\boldsymbol{\Sigma}_0$ is not the true covariance.

- We can get an estimate using any working covariance (... at the price of a possible loss in efficiency).
- E.g. working independence estimator (= OLS).

Likelihood inference

The likelihood function of the longitudinal data (or other repeated measurements) is:

$$\prod_{i=1}^{N} \left(\frac{1}{2\pi |\Sigma(\theta)|}\right)^{\frac{n}{2}} \exp\left\{-\frac{(y_i - X_i\beta)^T \Sigma(\theta)^{-1} (y_i - X_i\beta)}{2}\right\}$$

Maximize to get estimates of the model parameters:

- β (mean value structure)
- θ (covariance structure)

The conventional likelihood (ML) yields biased estimates of Σ when $\dim(\beta)$ is large.

► Hence, not often used.

24 / 78

Restricted likelihood yields umbiased estimates of $\boldsymbol{\Sigma}.$

- 1. Use a working covariance to get an initial GLS estimate of $\beta\cdot,$
- 2. the covariance is estimated from the 'likelihood' of the resulting residuals (non-linear optimization problem),
- 3. and finally β is re-estimated by GLS weighting by the estimated covariance.

Note: In proc mixed REML-estimation is default. To get the ML-estimator you need to use the METHOD=ML-option.

Nonlinearity

When the linear model doesn't seem to fit

Appearant misfis could be due to **time-varying covariates**.

► Model checking should be performed on the residuals.

Some times transformation helps.

 E.g. logatrithm if overall change tends to increase with increasing level.

Alternatives to the linear mixed model:

- ► Non-linear mixed model (difficult).
- Analysis of summary statistics (easy).

Individual time profiles are not parallel.

Could analyze:

- AUCs
- ► times to peak
- ► peak values

▶ ...

Or a suitable (which??) non-linear model.

DEPARTMENT OF BIOSTATISTI

NIVERSITY OF COPENHAGEN

25 / 78

Checking the multivariate normal assumption

... not easy unless n = 2.

Is normality really needed?

The **standard assumption** is that outcomes from the same subject follow a **multivariate normal distribution**.

But: the linear models for repeated outcomes are robust.

- As long as the linear model for the mean is correct and the covariance is well specified.
- ▶ If sample size is not too small.

28 / 78

- If there aren't too many missing observations.
- If the distribution of the data is not too skew.

Highly skew data should always be transformed.

Outline

Linear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

Baseline adjustment	(FLW:2011, ch. 5.6-5.7)
---------------------	-------------------------

Analysis of response profiles

Comparison of change over n time points within q groups of subjects (e.g. different treatments).

- Similar to two-way ANOVA only with correlated data.
- **Covariates:** group and time
- **Balanced design**, but possibly incomplete data.
- An **unstructured covariance** is assumed.
- ► Have the groups (treatments) been randomized?
 - ▶ Then do baseline adjustment (later this day)!

32 / 78

Case study: Eplerenone

Individual curves are roughly parallel and few data are missing, so we look at averages over time.

Two-way ANOVA model for the means

	Treatment = Control	Treatment = Eplerenone
t=0	β_1	$\beta_1 + \beta_2$
t=12	$\beta_1 + \beta_3$	$\beta_1 + \beta_2 + \beta_3 + \beta_5$
t=24	$\beta_1 + \beta_4$	$\beta_1 + \beta_2 + \beta_4 + \beta_6$

- Standard treatment and baseline is reference (intercept)
- ► Time effect with standard treatment
- ► Difference between groups at baseline

• In fact we know $\beta_2 = 0$ so we ought to do baseline correction.

Interaction (i.e. difference in time effect)

Eplerenone: Parameter estimates

			Standard					H_0 : INC
time	treat	Estimate	Error	DF	t Value	Pr > t		Ť
		24.3431	2.0778	49.4	11.72	<.0001		▶ i e
	new	-2.0547	2.8988	48.9	-0.71	0.4818		
	old	0						
after12	W	1.0887	1.7658	46.2	0.62	0.5406		
after24	W	3.0895	1.4960	44.5	2.07	0.0448		
baselin	e	0						
t after12	w new	-1.9493	2.4822	45.8	-0.79	0.4363		* MODE
t after12	w old	0						
t after24	w new	-3.6078	2.1231	45.3	-1.70	0.0961		
t after24	w old	0						
t baselin	e new	0			•	•		
t baselin	e old	0						
Col1 106.23 96.3802 30.1893	trix for i Col2 96.3802 159.64 106.48	Col3 80.1893 106.48 106.38						Effect treat time time*t
d R Correlat	ion Matrix	for id 1						
Col1	Col2	Col3						
1.0000	0.7401	0.7544					\mathbf{P}	N.
0.7401	1.0000	0.8171					3	
0.7544	0.8171	1.0000						be
	time after12 after24 baselin t after12 t after12 t after24 t after24 t baselin t baselin t baselin t baselin t baselin d R Correlat Col1 1.0000 0.7401 0.7544	time treat new old after12w after24w baseline t after12w old t after12w old t after24w old t after24w old t baseline new t after24w old t baseline old t baseline old timated R Matrix for in Col1 Col2 106.23 96.3802 26.3802 159.64 80.1893 106.48 d R Correlation Matrix Col1 Col2 1.0000 0.7401 0.7401 1.0000 0.7544 0.8171	time treat Estimate 24.3431 new -2.0547 old 0 after12w 1.0887 after24w 3.0895 baseline 0 t after12w new -1.9493 t after12w new -1.9493 t after24w new -3.6078 t after24w old 0 t baseline new 0 t baseline new 0 t baseline old 0 t baseline old 0 t baseline 1 Col1 Col2 Col3 106.23 96.3802 80.1893 96.3802 159.64 106.48 80.1893 106.48 106.38 d R Correlation Matrix for id 1 Col1 Col2 Col3 1.0000 0.7401 0.7544 0.7401 1.0000 0.8171 0.7544 0.8171 1.0000	Standard time treat Estimate Estimate 24.3431 Error 2.078 new -2.0547 2.6988 old 0 . after12w 1.0887 1.7658 after24w 3.0895 1.4960 baseline 0 . t after12w new -1.9493 t after12w old 0 . t after12w old 0 . t after24w new -1.9493 2.4822 t after24w new -3.6078 2.1231 t after24w old 0 . t baseline new 0 . t baseline old 0 . timated R Matrix for id 1 Col1 Col2 Col3 106.23 96.3802 80.1893 106.48 80.1893 106.48 106.38 . d R Correlation Matrix for id 1 .	Standard time treat Estimate Error DF 24.3431 2.0778 49.4 new -2.0547 2.8988 48.9 old 0 . . after12w 1.0887 1.7658 46.2 after24w 3.0895 1.4960 44.5 baseline 0 . . t after12w new -1.9493 2.4822 45.8 t after12w old 0 . . t after24w old 0 . . t after24w old 0 . . t after24w old 0 . . t baseline new 0 . . t baseline old 0 . . timated R Matrix for id 1 Col1 Col2 Col3 . </td <td>Standard time treat Estimate Error DF t Value 24.3431 2.0778 49.4 11.72 new -2.0547 2.8988 48.9 -0.71 old 0 . . . after12w 1.0887 1.7658 46.2 0.62 after12w 3.0895 1.4960 44.5 2.07 baseline 0 . . . t after12w new -1.9493 2.4822 45.8 -0.79 t after12w new -1.9493 2.4822 45.3 -1.70 t after24w old 0 . . . t after24w old 0 . . . t baseline new 0 . . . t baseline old 0 . . . t baseline old</td> <td>Standard time treat Estimate Error DF t Value Pr > t 1 24.3431 2.0778 49.4 11.72 <.0001</td> new -2.0547 2.8988 48.9 -0.71 0.4818 old 0 after12w 1.0887 1.7658 46.2 0.62 0.5406 after24w 3.0895 1.4960 44.5 2.07 0.0448 baseline 0 t after12w new -1.9493 2.4822 45.8 -0.79 0.4363 t after24w old 0 t after24w old	Standard time treat Estimate Error DF t Value 24.3431 2.0778 49.4 11.72 new -2.0547 2.8988 48.9 -0.71 old 0 . . . after12w 1.0887 1.7658 46.2 0.62 after12w 3.0895 1.4960 44.5 2.07 baseline 0 . . . t after12w new -1.9493 2.4822 45.8 -0.79 t after12w new -1.9493 2.4822 45.3 -1.70 t after24w old 0 . . . t after24w old 0 . . . t baseline new 0 . . . t baseline old 0 . . . t baseline old	Standard time treat Estimate Error DF t Value Pr > t 1 24.3431 2.0778 49.4 11.72 <.0001	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Hypothesis testing I: Omnibus test H_0 : No group*time-interaction.

• i.e. mean changes over time are identical in all groups.

* MODEL aix = treat time treat*time ;

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
treat	1	47	1.84	0.1815
time	2	45.3	1.02	0.3690
time*treat	2	45.3	1.48	0.2394

No overall significant difference in mean changes over time between the two treatments.

UNIVERSITY OF COPENHAGE

RTMENT OF BIOSTATISTICS UNIVERSITY OF COPENH

Hypothesis testing I: Post hoc tests

1 48.9

Suppose we had found a significant group*time-interaction.

* MODEL aix = treat*time / NOINT;

* LSMEANS treat*time / DIFF SLICE=time;

Differences of Least Squares Means

						Standard			
Effect	time	treat	_time	_trea	t Estimate	Error	DF	t Value	Pr >
time*treat	after12w	new	after12w	7 old	-4.0040	3.5885	45.5	-1.12	0.2
time*treat	after12w	new	after24w	new new	-0.3423	1.5221	46.8	-0.22	0.82
time*treat	after12w	new	after24w	7 old	-6.0048	3.2715	54.8	-1.84	0.0
time*treat	after12w	new	baseline	e new	-0.8606	1.7445	45.4	-0.49	0.62
time*treat	after12w	new	baseline	e old	-2.9153	3.2694	62	-0.89	0.3
time*treat	after12w	old	after24w	new new	3.6617	3.2952	55.4	1.11	0.2
time*treat	after12w	old	after24w	7 old	-2.0008	1.4854	44.9	-1.35	0.18
time*treat	after12w	old	baseline	e new	3.1434	3.2545	60.1	0.97	0.33
time*treat	after12w	old	baseline	e old	1.0887	1.7658	46.2	0.62	0.54
time*treat	after24w	new	after24w	7 old	-5.6625	2.9468	46	-1.92	0.06
time*treat	after24w	new	baseline	e new	-0.5183	1.5065	46	-0.34	0.73
time*treat	after24w	new	baseline	e old	-2.5730	2.9444	63.7	-0.87	0.38
time*treat	after24w	old	baseline	e new	5.1442	2.9012	60.7	1.77	0.08
time*treat	after24w	old	baseline	e old	3.0895	1.4960	44.5	2.07	0.04
time*treat	baseline	new	baseline	e old	-2.0547	2.8988	48.9	-0.71	0.48
Tests of E	Effect Slices								
		Num	Den						
Effect	time	DF	DF F	7 Value	Pr > F				
time*treat	after12w	1	45.5	1.24	0.2704			SIC R S	610
time*treat	after24w	1	46	3.69	0.0609			2	NIVE

0.50

0.4818

Hypothesis testing II: treatment contrast

H_0 : "No difference for a specific treatment contrast", e.g.

- Change at last follow-up is the same in all groups.
- Average change over time is the same in both groups.

* MODEL aix = treat*time / NOINT;

36 / 78

* ESTIMATE 'diff in ch last follow-up' treat*time 1 0 -1 -1 0 1;

* ESTIMATE 'diff in average change' treat*time 1 -0.5 -0.5 -1 0.5 0.5;

			Standard			
Label		Estimate	Error	DF	t Value	Pr > t
diff in ch last	follow-up	3.6078	2.1231	45.3	1.70	0.0961
diff in average	change	2.7786	2.0503	45.4	1.36	0.1821

- Seemingly improvement after eplerenone therapy, but non-significant difference at final evaluation.
- But we ought to make baseline adjustment.

time*treat

baseline

Outline

Introduction

Basics of longitudinal data (FLW:2011, ch. 1-2)

Linear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

SAS proc mixed (FLW:2011, ch. 5.9)

```
Baseline adjustment (FLW:2011, ch. 5.6-5.7)
```

Covariance pattern models (FLW:2011, ch. 7)

Syntax: Analysis of response profiles

PROC MIXED DATA=kidney PLOTS=all; CLASS id time treat timepoint; MODEL aix = treat time treat*time / SOLUTION CL DDFM=SATTERTHW REPEATED timepoint / subject=id TYPE=UN R RCORR; RUN;

- Syntax is similar to PROC GLM with a MODEL-statement specifying the (linear) relationship between outcome and covariates.
- ► Cathegorical variable must be declared with CLASS.
- The model for the covariance (UN=ustructured) is specified in a separate REPEATED-statement.
- ► Diagnostic plots with PLOTS-option.

UNIVERSITY OF COPENHAGEN

37 / 78

Why do we need two version of the time-variable?

Only one version is needed, but I used

time (cathegorical variable)

- ► Labeled *baseline*, *after12w*, *after24w*.
- ► Baseline is default reference being last in alphabetic order. for labeling the estimates for the mean.

timepoint (numerical variable)

- ► Labeled 1, 2, 3.
- ► Point 3 is default reference being last in numerical order. that matches the labels of the estimates for the covariance.

Simple alternative (in more recent versions of SAS):

The option DDFM=SATTERTHWAITE

(or DDFM=KENWARDROGERS).

38 / 78

DEPARTMENT OF BIOSTATISTICS

A technical option intended to improve the statistical performance of the F-tests.

- It has no effect on balanced data.
- In unbalanced situations (i.e for almost all observational designs and in case of missing observations) degrees of freedom are computed by a more complicated formulae.
- The computations may require a little more time, but in most cases this will not be noticable.

When in doubt, use it!

Alternative syntax: Treatment contrasts

The Mixed Procedure	
Model Information	
Data SetWORK.KIDNEYDependent VariableaixCovariance StructureUnstructuredSubject EffectidEstimation MethodREMLResidual Variance MethodNoneFixed Effects SE MethodModel-BasedDegrees of Freedom MethodSatterthwaite	
Class Level Information	
Class Levels Values	
id 51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 51 52 53 54 time 3 after12w after24w baseline treat 2 new old timepoint 3 1 2 3	14:52 Thursda & bruary
42/78 IVERSITY OF COPENHAGEN DEPART	TMENT OF BIOSTATISTICS
	The Mixed Procedure back Function Cat Set WORK.KIDNEY Cat Set WORK.KIDNEY Cat Set WORK.KIDNEY Cat Set WORK.KIDNEY Chapted Function Model.Base Cat Set Kethod Model-Base Cates Level Information Model.Base Class Levels Values 1 1 2 3 4 5 6 7 8 9 10 11 2 13 1 1 5 1 6 17 18 19 20 21 22 23 1 1 5 1 6 17 18 19 20 21 22 23 1 1 5 1 6 17 18 19 20 21 22 23 1 1 5 1 6 17 18 19 20 21 22 23 1 1 5 1 6 17 18 19 20 21 22 23 1 1 5 1 6 17 18 19 20 21 22 23 1 1 5 1 6 17 18 19 20 21 22 23 1 2 5 2 6 28 29 30 31 32 33 1 3 5 6 37 38 39 40 41 42 43 45 1 1 5 1 6 17 18 19 20 21 22 35 54 1 1 5 1 6 17 18 19 20 21 22 33 16 1 1 5 1 6 17 18 19 20 21 22 30 16 1 1 5 1 6 17 18 19 20 21 22 30 16 1 1 5 1 6 17 18 19 20 20 18 20 16 1 1 5 1 6 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20

SAS: proc mixed output

	Dimensions			
Covariance Columns in Columns in Subjects Max Obs Per	Parameters X Z Subject	6 12 0 51 3		
1	Number of Observ	ations		
Number of (Number of (Number of (Dbservations Rea Dbservations Use Dbservations Not	d 153 d 144 Used 9		
	Itera	tion History		
Iteration	Evaluations	-2 Res Log Like	Criterion	
0	1	1070.85454941		
1	2	982.86560047	0.00144735	
2	1	982.26253864	0.00009905	
3	1	982.22468047	0.0000061	
4	1	982.22445749	0.0000000	
	Converg	ence criteria met		

SAS: proc mixed output

SAS: proc mixed output

Options R and RCORR asks that estimated residual covariance and correlation matrices be printed.

The Mixed Procedure

	Estimated R	Matrix for 1	d 1			
Row	Coll	Col2	Col3			
1	106.23	96.3802	80.1893			
2	96.3802	159.64	106.48			
3	80.1893	106.48	106.38			
Estimated R Correlation Matrix for id 1						
Row	Col1	Col2	Col3			
1	1.0000	0.7401	0.7544			

1.0000

0.8171

0.8171

1.0000

2

3

0.7401

0.7544

DEPARTMENT OF BIOSTATISTI

SAS: proc mixed output

	Fi	t Statistic	CS		
-2 Res AIC (sr AICC (s BIC (sr	Log Li naller smaller naller	kelihood is better) is better) is better))	982.2 994.2 994.9 1005.8	
Null	Model	Likelihood	Ratio	Test	
DF 5	Chi	-Square 88.63	Pr >	> ChiSq <.0001	

Used for comparison of different models.

- ▶ METHOD=REML is default.
- ▶ But METHOD=ML should be used if you want to test a nested submodel for the mean-structure by the likelihood ratio test.

BUT: Often a CONTRAST-statement could be used instead.

NIVERSITY OF COPENHAGEN

45 / 78

Outline

Baseline adjustment (FLW:2011, ch. 5.6-5.7)

SAS: proc mixed output

At last: Parameter estimates and tests.

Solution for Fixed Effects

				Standard			
Effect	time	treat	Estimate	Error	DF	t Value	Pr > t
Intercept			24.3431	2.0778	49.4	11.72	<.0001
treat		new	-2.0547	2.8988	48.9	-0.71	0.4818
treat		old	0				
time	after12w		1.0887	1.7658	46.2	0.62	0.5406
time	after24w		3.0895	1.4960	44.5	2.07	0.0448
time	baseline		0				
time*treat	after12w	new	-1.9493	2.4822	45.8	-0.79	0.4363
time*treat	after12w	old	0				
time*treat	after24w	new	-3.6078	2.1231	45.3	-1.70	0.0961
time*treat	after24w	old	0				
time*treat	baseline	new	0				
time*treat	baseline	old	0	•			
т	umo 2 Tosta	of Finad	Efforts				
1	ype 5 lests	OI FIXed	LILECUS				
	Num I	Den					
Effect	DF	DF F	Value Pr 2	> F			

1.84

1.02

1.48

Baseline measurements

47

45.3

45.3

2

treat

time

46 / 78

48/78

time*treat

In randomized clinical trials, the first measurement is often a baseline measurement.

0.1815

0.3690

0.2394

Hypothetical comparison of two treatment groups

What happens if we ignore the baseline problem?

The non-existing difference at baseline makes the overall treatment effect appear smaller. Thus, the power of the test is reduced.

So should we leave out the baseline measurement?

We loose information about change over time and again the power of the test of treatment effect is reduced. Vickers & Altman, *Analysing controlled clinical trials with baseline follow-up measurements*, BMJ **323**, 1123–1124.

Three possibilities: 1. End point, 2. Change, 3. ANCOVA

1. Discard baseline, ok if correlation is small

Classical approaches for handling baseline

- 2. Subtract baseline, ok if correlation is large
- 3. Condition on baseline, using it as covariate, always ok.

Conclusion: ANCOVA is most efficient.

Why ANCOVA is superior

For simplicity assume treatment (x = 1) vs placebo (x = 0) with only one time of follow-up $(t_1 = 0, t_2 = 1)$,

$$Y_{ij} = \beta_1 + \beta_2 \cdot t_j + \beta_3 \cdot x \cdot t_j + \varepsilon_{ij}$$

where

51/78

 $\begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \sigma^2 \rho \\ \sigma^2 \rho & \sigma^2 \end{pmatrix}\right)$

Implied residual variances for the three models.

- 1. $Var(Y_2) = \sigma^2$
- 2. Var $(Y_2 Y_1) = 2\sigma^2(1 \rho)$

3. Var
$$(Y_2|Y_1) = \sigma^2(1-\rho^2)$$

Note: The assumption that the variance is constant over time could be dropped.

ANCOVA with multiple times of follow-up

Different effects of baseline at different time points due to stronger correlation between baseline and early follow up.

▶ The model should include a baseline*time interaction.

Example:

52/78

PROC MIXED DATA=kidney0; CLASS id time treat timepoint;

```
MODEL aix = aix0*time treat*time / NOINT DDFM=SATTERTHWAITE;
LSMEANS treat*time / DIFF SLICE=time;
REPEATED timepoint / SUBJECT=id TYPE=UN R RCORR;
RUN;
```

Eplerenone: ANCOVA

Differences of Least Squares Means	Note: Covariance estimates change substantially when baseline is
Standard Effect time treat _time _treat Estimate Error DF t Value Pr > t timettreat _sfter12; _eld _2_3404 _2_5643 _44 _0_92 _0_3646	included as a covariate (it explains a lot of variation in the data).
time+treat after12w new after24w new -0.5394 2.0043 44 -0.52 0.0040 time+treat after12w new after24w new -0.2999 1.5388 44.8 -0.19 0.8464 time+treat after12w new after24w old -4.5328 2.3048 63.6 -1.97 0.0536	The Mixed Procedure
time+treat after12w old after24w new 2.0495 2.0410 64.8 0.80 0.8045 time+treat after12w old after24w old -2.1834 1.5312 43.1 -1.43 0.1611 time+treat after24w new after24w old -4.2329 2.0762 43.7 -2.04 0.0475	Estimated R Matrix for id 1 Row Col1 Col2
Tests of Effect Slices	1 74.1578 34.2828 2 34.2828 47.2484
Num Den Effect time DF DF F Value Pr > F time*treat after12we 1 44 0.3646 time*treat after24we 1 43.7 4.16 0.0475	Estimated R Correlation Matrix for id 1
	Row Coll Col2
Conclusion: Significant difference at last follow-up. Estimated difference in change over time -4.23% (95% CI: -8.42% to -0.05% , P=0.0475) in favor of Eplerenone. So hopefully the protocol dictated ANCOVA with this particular parameter of interest.	1 1.0000 0.5792 2 0.5792 1.0000

A fourth option

Constrained linear mixed model (cLMM):

- ► Analysis of response profiles.
- include baseline as a response, but redefine covariates so that identical group means at baseline are modeled.

Liu et al: Should baseline be a covariate or dependent variable in analyses of change from baseline in clinical trials?, Statist. Med. **28**, 2509–2530, (2009):

Conclusions:

- similar power to ANCOVA (with no missing data).
- ▶ by default handles missing data (MAR) optimally.

But: ANCOVA has a computational advantage, so

cLMM parametrisation

Eplerenone: ANCOVA

	Treatment = Standard	Treatment = Eplerenone
t=0	β_1	eta_1+0
t=12	$\beta_1 + \beta_2$	$\beta_1 + 0 + \beta_2 + \beta_4$
t=24	$\beta_1 + \beta_3$	$\beta_1 + 0 + \beta_3 + \beta_5$

► Intercept.

- Time effect with standard treatment
- difference between groups at baseline = 0!
- Interactions (differences in time-effects)

Eplerenone: cLMM

Eplerenone: cLMM output

DATA Inidaan				S	olution for	Fixed E	ffects		
DATA kidney;					Standard				
SET kidney;	Effect	time	timenew	Estimate	Error	DF	t Value	Pr > t	
<pre>timenew='zero0';</pre>	Intercept	01110	011101101	23.2879	1.4425	50	16.14	<.0001	
IF week EQ 5 AND treat EQ 'new' THEN timenew ='week12';	time	after12we		1.2017	1.7575	46.8	0.68	0.4975	
IF week EQ 8 AND treat EQ 'new' THEN timenew='week24':	time	after24we		3.3608	1.4450	48.3	2.33	0.0243	
	time	baseline		0		÷	:		
ron,	timenew		week12	-2.1552	2.4637	46	-0.87	0.3862	
	timenew		week24	-4.1247	1.9931	45.9	-2.07	0.0442	
PROC MIXED DATA=kidney;	timenew		zero0	0			•		
CLASS id time timenew timepoint;									
MODEL aix = time timenew / SOLUTION CL DDFM=SATTERTHWAITE;									
REPEATED timepoint / SUBJECT=id TYPE=UN R RCORR;	Conclus	sion: Sig	nificant	difference	e at last	follo	v-up. E	stimated	
RIN:					100/ (00	-0/ 01	0 1 4 0	1/10/10/10/10/10/10/10/100/100/100/100/	
	airrerend	ce in cha	nge ove	r time -4.	12% (95)% CI	: -8.14	/o to -U.11%	7
	P-0.04	(12) in factor	vor of E	nlerenone	<u>`</u>				
	1 -0.04	±∠j III Ia		prerenone					

Eplerenone: cLMM output

Note: Covariance estimates hardly change when the constraint is put on the mean parameters at baseline.

	Estimated	R Matrix for i	d 1
Row	Col1	Col2	Col3
1 2 3	105.29 95.5196 79.4628	95.5196 158.77 105.76	79.4628 105.76 105.77
Estim	ated R Corr	relation Matrix	for id 1
Row	Col1	Col2	Col3
1	1.0000	0.7388	0.7530
2	0.7388	1.0000	0.8161
3	0.7530	0.8161	1.0000

ANCOVA and cLMM interpretation

ANCOVA and cLMMs estimate the treatment effect with similar accuracy.

- P-values and parameter estimates are very similar
- but not identical.

60/78

The models have different interpretations.

- cLMM describes the joint distribution of the response over time including baseline.
- ANCOVA describes the response at follow-up conditional on the baseline response.

DEPARTMENT OF BIOSTATISTI

cLMM implies ANCOVA

Assume a cLMM for (Y_{i1},\ldots,Y_{in}) . That is, means described as

 $E(Y_{i1}) = \beta_1, \quad E(Y_{ij}) = \beta_1 + \beta_j + X_i \beta_{n+j-1}$

for j = 2, ..., n, and with X denoting the indicator of treatment. A similar **unstructured covariance** Σ is assumed for **both groups**.

Then the conditional distribution of $(Y_{i2},\ldots,\,Y_{in})$ given Y_{i1} is again a normal distribution with

$$E(Y_{ij}|Y_{i1}) = \beta_1 + \beta_j + X_i\beta_{n+j-1} + \sigma_{ij}/\sigma_1^2(Y_{i1} - \beta_1)$$

$$\operatorname{Cov}(Y_{ij}, Y_{ik} | Y_{i1}) = \sigma_{jk} - \frac{\sigma_{1k} \sigma_{1j}}{\sigma_1^2}$$

Hence the conditional model is the ANCOVA.

• **Note:** the treatment effects are the same in both models.

UNIVERSITY OF COPENHAGEN

61/78

Baseline in observational studies

Fitzmaurice et al. (2011)[Section 5.6]:

For example, in an observational study examining gender differences in weight gain of infants between 12 months (baseline) and 24 months (...) At baseline boys are on average 1 1/2 pounds heavier than girls, but there is no evidence of a gender effect on the 12 month change in body weight, with boys and girls both gaining approximately 5 1/4 pound. In contrast the analysis of covariance of the same data reveals a discernible gender effect with boys showing more weight gain than girls.

(...) the analysis of covariance is directed at the conditional question of whether boys are expected to gain more weight than girls given that they have the same initial weight at 12 months. (...) The reasoning is that if a boy and girl have the same initial weight at 12 months, then there are two possibilities: (1) the girl is initially overweight and is expected to gain less weight or (2) the boy is initially underweight and is expected to gain more weight over the 12 months. We advise readers to employ the analysis of covariance approach in longitudinal settings only if the approach and its implications are fully understood.

Baseline in observational studies

Compare the outcomes for individuals from different groups (e.g. gender or illness groups):

- The groups are likely to differ in many respects ... including the baseline outcome value!
- Differences in response profiles may be due to many factors, and quantifications will depend on which of these are factors are included in the model.
- ► Adjust for the covariates that are sensible in the context.

Is the baseline measurement a sensible covariate?

Outline

UNIVERSITY OF COPENHAGEN

Introduction

64/78

Basics of longitudinal data (FLW:2011, ch. 1-2)

Linear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

SAS proc mixed (FLW:2011, ch. 5.9)

Baseline adjustment (FLW:2011, ch. 5.6-5.7)

Covariance pattern models (FLW:2011, ch. 7)

The unstructured covariance

Advantages

- We make no wrong assumptions about the covariance of our observations.
- ▶ We gain insight in the actual structure of the covariance.

Drawbacks

- We use quite a lot of parameters to describe the covariance structure. Thus our analysis becomes less efficient.
- No good with small data sets/many time points; The results may be unstable.
- It can only be used in case of balanced design, i.e. all subjects have to be measured at identical times.

Choosing a model for the covariance

Explorative data analysis suggested by FLW (2011):

- $1. \ \mbox{Put up a plausible (e.g. saturated) model for the mean }$
- 2. Fit the data so far ignoring correlation (GLM).
- 3. Check the residuals for assessing the adequacy of the model for the mean and in order to get an impression of the error covariance.
- Pick a reasonable model for the covariance (if possible test against the unstructured model).
- 5. Re-check the model fit.
- 6. Compute estimates, confidence intervals, and p-values.

JNIVERSITY OF COPENHAGEN

65 / 78

Example: Calcium supplements

Individual profiles

A total of 112 11-year old girls were randomized to receive either calcium or placebo.

Outcome: BMD=bone mineral density, in $\frac{g}{cm^2}$

Follow-up: every 6 months, 5 visits in total including baseline

Does calcium improve the bone gain for adolescent women?

Output

Analysis of response profiles

	E50	imated it	COLLETACT	OII MACIIX IC	or Giri(Grb)	101 0	
At first do not assume any specific structure	Row	Col1	Col 2	Coli	3 Co	14 Co15	
neither for the mean nor for the covariances.	1	1.0000	0.9699	0.9414	4 0.925	50 0.8987	
	2	0.9699	1.0000	0.972	7 0.958	35 0.9399	
Use the saturated model as reference point.	3	0.9414	0.9727	1.0000	0.980	0.9592	
	4	0.9250	0.9585	0.9809	9 1.000	0.9755	
Note: We ought to do baseline adjustment.	5	0.8987	0.9399	0.9592	2 0.975	55 1.0000	
		Fit Stat	istics				
PROC MIXED DATA=calcium;	-2 Res Log	Likeliho	ood	-2346.3	<	-used later	
CLASS grp girl visit;							
MODEL bmd=grp visit grp*visit / DDFM=SATTERTHWAITE; REPEATED visit / TYPE=UN SUBJECT=girl(grp) R RCORR;	Ty	pe 3 Test	s of Fixe	d Effects			
RUN;		Num	Den				
,	Effect	DF	DF	F Value	Pr > F		
	grp	1	109	2.55	0.1129		
	visit	4	97.1	258.08	<.0001		
	grp*visit	4	97.1	2.79	0.0303		S S S
69/78	70/78						•
ERSITY OF COPENHAGEN DEPARTMENT OF BIOS	STATISTICS UNIVERSITY OF CC	PENHAGE	N		1	DEPARTMENT OF	BIOSTATISTI

Stationary covariance patterns

Most available models for are for equidistant observations, assuming both variances and correlations are stationary, i.e.

- The variances are **all the same**
- Correlation depend only on the time-distance between the observations.

proc mixed	$\operatorname{Cov}(Y_{ij}, Y_{ik})$	no.
type=		par
CS	$\sigma^2[I\{j=k\} + \rho \cdot I\{j \neq k\}]$	2
AR(1)	$\sigma^2 ho^{ k-j }$	2
ARMA(1,1)	$\sigma^2[I\{j=k\} + \gamma \cdot \rho^{ k-j -1}I\{j\neq k\}]$	3
TOEP	$\sigma^2[I\{j=k\} + \rho_{ k-j } \cdot I\{j \neq k\}]$	n

aka the *compound symmetry*, *autoregressive*, *autoregressive moving average*, and the *Toeplitz* models.

Heterogeneous covariance patterns

The assumption that the variances are stationary can be dropped in which case we have a heterogeneous model for the variances.

Estimated D. Commolation Matrix for similary) 101 C

- ► No restrictions on the variances
- Correlation depend only on the time-distance between the observations.

proc mixed		no.
type=	$\operatorname{Cov}(Y_{ij}, Y_{ik})$	par
CSH	$\sigma_j \sigma_k [I\{j=k\} + \rho \cdot I\{j \neq k\}]$	n+1
ARH(1)	$\sigma_j \sigma_k ho^{ k-j }$	n+1
TOEPH	$\sigma_j \sigma_k [I\{j=k\} + \rho_{ k-j } \cdot I\{j \neq k\}]$	2n - 1
ANTE(1)	$\sigma_j \sigma_k \prod_{l=j}^{k-1} \rho_l$	2n - 1

aka the *heterogeneous compound symmetry*, *heterogeneous autoregressive*, the *heterogeneous Toeplitz*, and the *antedependence* covariance sturctures.

Autoregressive covariance structure in SAS

Output from TYPE=AR(1) structure

Estimated R Correlation Matrix for girl(grp) 101 C

Fit the calcium data with:	Row 1 2	Col1 1.0000 0.9708	Col2 0.9708 1.0000	Col: 0.942	Col4 5 0.9150 3 0.9425	Col5 0.8883 0.9150	
	3	0.9425	0.9708	1.000	0.9708	0.9425	
PROC MIXED DATA=calcium;	4 5	0.9150 0.8883	0.9425 0.9150	0.970	3 1.0000 5 0.9708	0.9708 1.0000	
CLASS grp girl visit;	Covaria	ince Paramet	er Estim	ates			
MODEL bmd=grp visit grp*visit / DDFM=SATTERTHWAITE; REPEATED visit / TYPE=AR(1) SUBJECT=girl(grp) R RCORR;	Cov Parm AR(1) Residual	Subject girl(gr	rp) 0.	timate 0.9708 004412			
RUN;	-2 Res Lo	Fit Stati og Likelihoo	istics od	-2318.6	<us< td=""><td>ed later</td><td></td></us<>	ed later	
Note: Similar syntax is valid for the other types of covariance	Т	ype 3 Tests	s of Fixe	d Effects			
patterns in the table above.		Num	Den				
	Effect	DF	DF	F Value	Pr > F		
	grp	1	113	2.74	0.1005		
	grp*visit	4 4	382	2.86	0.0232		
73/78	74 / 78						
RSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS UNIVE	ERSITY O	F COPENH	I A G E N				DEPARTMENT OF BIOSTATISTICS

76 / 78

Comparison of covariance structures

Use the likelihood (either of REML or ML):

- Better fitting models have large values of likelihood L and therefore small values of deviance: $-2 \log L$
- Compute differences in deviances (∆ = −2 log Q) and compare to a χ²-distribution with df = ∆no. params.

Note: Only *nested* models can be compared.

We can use the unstructured covariance as reference point since it contains all other models as submodels.

Example: AR vs UN

$$-2\log Q = 2346.3 - 2318.6 = 27.7$$

$$\sim \chi^2(15 - 2) = \chi^2(13) \Rightarrow P = 0.01$$

Comparison of covariance structures

Model	-2 log L	par.	$-2\log Q$	df	Р
UN	-2346.3	15			
ARMA(1,1)	-2318.6	3	27.7	12	0.006
AR(1)	-2318.6	2	27.7	13	0.010
CS	-2188.8	2	129.8	13	< 0.0001

Better stick to the unstructured covariance.

(Or try ARH(1) since the variances seem to increase with time).

77 / 78

78 / 78

Predicted mean time profiles

Note: Estimated profiles are **almost identical** for all choices of covariance structures. In fact, for balanced data, they agree completely (since they are equal to the group*time-averages).

Tests of treatment effect

BUT: We cannot make inference from profiles alone

Tests of the interaction term group*visit:.

Covariance structure	Test statistic \sim distribution	P value*
Independence	$0.35 \sim F(4,491)$	0.84
Compound symmetry	$5.30 \sim F(4,382)$	0.0004
Autoregressive	$2.86 \sim F(4,382)$	0.023
Unstructured	$2.72 \sim F(4,107)$	0.034

• Confidence intervals and tests depend on the covariance.