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Plan

Today: Introduction and longitudinal data analysis.
I Basic concepts for correlated and clustered data.
I Analysis of response profiles.
I Baseline adjustment for randomized trials
I Covariance pattern models.

Tomorrow: Linear mixed models in general.
I Random effects and variance components
I Multi-level models for clustered data.
I Cross-over trials.

3 / 78

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Practicalities

Lectures in the morning (9.15–12.00)
I Linear mixed models for repeated measurements and clustered

data.

Computer labs the afternoon (13.00-15.45)
I Data analysis with SAS PROC MIXED

Note: Some of the datasets we use in our case studies are in fact
too small to yield interesting conclusion. But due to their small
size they are useful for illustrative purposes.
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Recommended reading

Lecture notes, exercises etc
I Found at the course webpages

The book:
I G.M. Fitzmaurice, N.M. Laird & J.H. Ware :

Applied Longitudinal Analysis (2nd edition),
John Wiley & sons, 2011

Additional examples in SAS, R and Stata can be found at:
I www.biostat.harvard.edu/fitzmaur/ala2e
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What are repeated measurements?

Repeated measurements refer to data where the same outcome has
been measured in different situations (or at different spots) on the
same individuals.

I Special case: longitudinal means repeatedly over time.
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What is clustered data?

Repeated measurements are termed clustered data when the same
outcome is measured on groups of individuals from the same
families/workplaces/school classes/clinics/etc.
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Why do we need special models for rep. measurements?
The general linear model (GLM) assume that observations are
independent. If you have clustered or repeated measurements the
assumption of independence is violated.

Ignoring the repetitions/clustering would lead to invalid inference:
I p-values that are too small or too large.
I confidence intervals that are too wide or too narrow.

Change in enegy intake (kJ) pre- to post-menstrually in 11 women.

Analysis Estimate (95% CI) P-value
paired t-test 1320 (1074;1567) 0.0000003
two-sample t-test 1320 (271; 2370) 0.01625

(D.G. Altman: Practical Statistics for Medical Research, Section 9.5)
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Typical set-up for longitudinal measurements

Two or more groups of subjects
I Often receiving different treatments
I Possibly randomised at baseline.

Longitudinal measurements of the same quantity over time for
each subject, typically as a function of

I time (i.e. duration of treatment)
I age
I cumulative dose of drug

Do the time courses differ between the groups?
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Case study: Eplerenone
Response: Augmentation index (aix) in patients with CKD.

I Comparison of novel treatment to standard.
I Follow-up after 12 and 24 weeks.

Reference: Boesby etal, PLOS ONE 8(5), 2013.11 / 78
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Merits of longitudinal studies

In longitudinal studies measurements are taken repeatedly on the
same subjects over time.

I This allows us to study changes over time within subjects
and factors that influence these changes, e.g. treatment.

I By comparing each individuals responses at two or more
occations we eliminate extraneuous but unavoidable sources of
variabitlity among individuals. Thus we obtain more accurate
estimates and more certain conclusions about changes over
time than in cross-sectional studies.
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Longitudinal vs cross sectional effect
Example: Reading ability, as a function of age and cohort:
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Unbalanced and incomplete data

In a planned study the times of measurements will usually be the
same for all subjects. We have a balanced design

In practice data is most often somewhat unbalanced due to
drop-out, missed visits, failed measurements.

I In this case we say that data is incomplete.
I But the design is still balanced.

Data from (retro-spective) observational studies are most often
unbalanced both by design and in practice.
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Notation

Longitudinal data is described as:
I Subjects i = 1, . . . ,N .
I Observations Yi1, . . . ,Yini (from subject i).
I Taken at occations ti1, . . . , tini (for subject i).
I Possibly additional covariates Xij2, . . . ,Xijp

(for subject i at occation j).

Convention: Subscripts i are dropped when occations t1, . . . , tn
are the same for all subjects.
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The distribution of repeated outcomes

Repeated measurements Yi1, . . . ,Yini are characterized by being
I mutually dependent or correlated.

We need to characterize their joint distribution.

Standard model for quantitative data: The multivariate normal
I Location: mean-vector
I Variability: covariance-matrix

Main interest is in modeling the mean.
I BUT: We also need to model the covariance in order to

account for it in the analyses.
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Notation
Denote mean and variance of the normal distribution by:

µ =




µ1
µ2
...
µn



, Σ =




σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

... ... ...
σn1 σn2 . . . σ2

n




The correlation matrix is



1 ρ12 . . . ρ1n
ρ21 1 . . . ρ2n
... ... ...
ρn1 ρn2 . . . 1




where ρjk = Cor(Yj ,Yk) = σjk
σjσk

.
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Modeling the mean

Models for the mean are specified just as in GLM.

I including covariates that can be both cathegorical and
continuous.

I E.g. treatment, gender, and age.

The time-effect is always included.
I As a factor
I or as a linear/polynomial trend.

Note that covariates are allowed to change with time.
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The linear model for longitudinal data
Assume a linear model for the response-vectors:

Yi = Xi · β + εi

I.e.




Yi1
Yi2
...

Yin




=




Xi11 Xi12 . . . Xi1p
Xi21 Xi22 . . . Xi2p
... ... ...

Xin1 Xin2 . . . Xinp



·




β1
β2
...
βp




+




εi1
εi2
...
εin




I Where Xi is the n × p design-matrix for subject i.
I Error terms are multivariate normal εi ∼ Nn(0,Σ)

For now we assume the covariance Σ is the same for all subjects,
but we could have different Σ’s for groups
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Modeling the covariance
Several possibilitites.

Unstructured covariance
I One variance parameter for each time point
I One correlation parameter for each pair of time points
I n + n(n−1)

2 parameters in total with n time points.
Fully flexible because no assumptions are made about the
covariance as a function of time.

Covariance pattern models
I Models borrowed from time series analysis. Make use of the

time ordering to describe covariance with fewer parameters.
I Variance component models (tomorrow).

Must be chosen with care due to risk of misspecification.
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Likelihood inference

The likelihood function of the longitudinal data (or other repeated
measurements) is:

N∏

i=1

( 1
2π|Σ(θ)|

) n
2

exp
{
−(yi −Xiβ)T Σ(θ)−1(yi −Xiβ)

2

}

Maximize to get estimates of the model parameters:
I β (mean value structure)
I θ (covariance structure)
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Generalized least squares (GLS)

Suppose a known covariance Σ0 is known, then the MLE for β is

I β̂ =
{∑N

i=1(XT
i Σ−1

0 Xi)
}−1∑N

i=1 XT
i Σ−1

0 Yi

This estimate is unbiased even if Σ0 is not the true covariance.
I We can get an estimate using any working covariance

(. . . at the price of a possible loss in efficiency).
I E.g. working independence estimator (= OLS).
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Restricted likelihood (REML)

The conventional likelihood (ML) yields biased estimates of Σ
when dim(β) is large.

I Hence, not often used.

Restricted likelihood yields umbiased estimates of Σ.
1. Use a working covariance to get an initial GLS estimate of β·,
2. the covariance is estimated from the ’likelihood’ of the

resulting residuals (non-linear optimization problem),
3. and finally β is re-estimated by GLS weighting by the

estimated covariance.

Note: In proc mixed REML-estimation is default. To get the
ML-estimator you need to use the METHOD=ML-option.
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When the linear model doesn’t seem to fit

Appearant misfis could be due to time-varying covariates.
I Model checking should be performed on the residuals.

Some times transformation helps.
I E.g. logatrithm if overall change tends to increase with

increasing level.

Alternatives to the linear mixed model:
I Non-linear mixed model (difficult).
I Analysis of summary statistics (easy).
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Nonlinearity

Individual time profiles
are not parallel.

Could analyze:
I AUCs
I times to peak
I peak values
I . . .

Or a suitable (which??)
non-linear model.
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Checking the multivariate normal assumption
. . . not easy unless n = 2.

Source: Wikipedia.27 / 78
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Is normality really needed?

The standard assumption is that outcomes from the same
subject follow a multivariate normal distribution.

But: the linear models for repeated outcomes are robust.
I As long as the linear model for the mean is correct and the

covariance is well specified.
I If sample size is not too small.
I If there aren’t too many missing observations.
I If the distribution of the data is not too skew.

Highly skew data should always be transformed.
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Analysis of response profiles

Comparison of change over n time points within g groups of
subjects (e.g. different treatments).

I Similar to two-way ANOVA only with correlated data.
I Covariates: group and time
I Balanced design, but possibly incomplete data.
I An unstructured covariance is assumed.
I Have the groups (treatments) been randomized?

I Then do baseline adjustment (later this day)!

Do the groups evolve differently with time?
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Case study: Eplerenone
Individual curves are roughly parallel and few data are missing, so
we look at averages over time.

Seeming improvement over time with Eplerenone.
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Two-way ANOVA model for the means

Treatment = Control Treatment = Eplerenone
t=0 β1 β1 + β2
t=12 β1 + β3 β1 + β2 + β3 + β5
t=24 β1 + β4 β1 + β2 + β4 + β6

I Standard treatment and baseline is reference (intercept)
I Time effect with standard treatment
I Difference between groups at baseline

I In fact we know β2 = 0 so we ought to do baseline correction.
I Interaction (i.e. difference in time effect)
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Eplerenone: Parameter estimates
Standard

Effect time treat Estimate Error DF t Value Pr > |t|
Intercept 24.3431 2.0778 49.4 11.72 <.0001
treat new -2.0547 2.8988 48.9 -0.71 0.4818
treat old 0 . . . .
time after12w 1.0887 1.7658 46.2 0.62 0.5406
time after24w 3.0895 1.4960 44.5 2.07 0.0448
time baseline 0 . . . .
time*treat after12w new -1.9493 2.4822 45.8 -0.79 0.4363
time*treat after12w old 0 . . . .
time*treat after24w new -3.6078 2.1231 45.3 -1.70 0.0961
time*treat after24w old 0 . . . .
time*treat baseline new 0 . . . .
time*treat baseline old 0 . . . .

Estimated R Matrix for id 1

Row Col1 Col2 Col3
1 106.23 96.3802 80.1893
2 96.3802 159.64 106.48
3 80.1893 106.48 106.38

Estimated R Correlation Matrix for id 1

Row Col1 Col2 Col3
1 1.0000 0.7401 0.7544
2 0.7401 1.0000 0.8171
3 0.7544 0.8171 1.0000
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Hypothesis testing I: Omnibus test
H0: No group*time-interaction.

I i.e. mean changes over time are identical in all groups.

* MODEL aix = treat time treat*time ;

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
treat 1 47 1.84 0.1815
time 2 45.3 1.02 0.3690
time*treat 2 45.3 1.48 0.2394

I No overall significant difference in mean changes over time
between the two treatments.34 / 78
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Hypothesis testing I: Post hoc tests
Suppose we had found a significant group*time-interaction.
* MODEL aix = treat*time / NOINT;
* LSMEANS treat*time / DIFF SLICE=time;

Differences of Least Squares Means
Standard

Effect time treat _time _treat Estimate Error DF t Value Pr > |t|
time*treat after12w new after12w old -4.0040 3.5885 45.5 -1.12 0.2704
time*treat after12w new after24w new -0.3423 1.5221 46.8 -0.22 0.8230
time*treat after12w new after24w old -6.0048 3.2715 54.8 -1.84 0.0719
time*treat after12w new baseline new -0.8606 1.7445 45.4 -0.49 0.6242
time*treat after12w new baseline old -2.9153 3.2694 62 -0.89 0.3760
time*treat after12w old after24w new 3.6617 3.2952 55.4 1.11 0.2713
time*treat after12w old after24w old -2.0008 1.4854 44.9 -1.35 0.1848
time*treat after12w old baseline new 3.1434 3.2545 60.1 0.97 0.3380
time*treat after12w old baseline old 1.0887 1.7658 46.2 0.62 0.5406
time*treat after24w new after24w old -5.6625 2.9468 46 -1.92 0.0609
time*treat after24w new baseline new -0.5183 1.5065 46 -0.34 0.7324
time*treat after24w new baseline old -2.5730 2.9444 63.7 -0.87 0.3855
time*treat after24w old baseline new 5.1442 2.9012 60.7 1.77 0.0812
time*treat after24w old baseline old 3.0895 1.4960 44.5 2.07 0.0448
time*treat baseline new baseline old -2.0547 2.8988 48.9 -0.71 0.4818

Tests of Effect Slices
Num Den

Effect time DF DF F Value Pr > F
time*treat after12w 1 45.5 1.24 0.2704
time*treat after24w 1 46 3.69 0.0609
time*treat baseline 1 48.9 0.50 0.4818
35 / 78
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Hypothesis testing II: treatment contrast

H0: "No difference for a specific treatment contrast", e.g.
I Change at last follow-up is the same in all groups.
I Average change over time is the same in both groups.

* MODEL aix = treat*time / NOINT;
* ESTIMATE ’diff in ch last follow-up’ treat*time 1 0 -1 -1 0 1;
* ESTIMATE ’diff in average change’ treat*time 1 -0.5 -0.5 -1 0.5 0.5;

Standard
Label Estimate Error DF t Value Pr > |t|
diff in ch last follow-up 3.6078 2.1231 45.3 1.70 0.0961
diff in average change 2.7786 2.0503 45.4 1.36 0.1821

I Seemingly improvement after eplerenone therapy, but
non-significant difference at final evaluation.

I But we ought to make baseline adjustment.
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Syntax: Analysis of response profiles

PROC MIXED DATA=kidney PLOTS=all;
CLASS id time treat timepoint;
MODEL aix = treat time treat*time / SOLUTION CL DDFM=SATTERTHWAITE;
REPEATED timepoint / subject=id TYPE=UN R RCORR;

RUN;

I Syntax is similar to PROC GLM with a MODEL-statement
specifying the (linear) relationship between outcome and
covariates.

I Cathegorical variable must be declared with CLASS.
I The model for the covariance (UN=ustructured) is specified

in a separate REPEATED-statement.
I Diagnostic plots with PLOTS-option.
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Why do we need two version of the time-variable?
Only one version is needed, but I used . . .

time (cathegorical variable)
I Labeled baseline, after12w, after24w.
I Baseline is default reference being last in alphabetic order.

for labeling the estimates for the mean.

timepoint (numerical variable)
I Labeled 1, 2, 3.
I Point 3 is default reference being last in numerical order.

that matches the labels of the estimates for the covariance.

Simple alternative (in more recent versions of SAS):

CLASS id treat timepoint (REF=1);
39 / 78
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The option DDFM=SATTERTHWAITE

(or DDFM=KENWARDROGERS).

A technical option intended to improve the statistical performance
of the F-tests.

I It has no effect on balanced data.
I In unbalanced situations (i.e for almost all observational

designs and in case of missing observations) degrees of
freedom are computed by a more complicated formulae.

I The computations may require a little more time,
but in most cases this will not be noticable.

When in doubt, use it!
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Alternative syntax: Treatment contrasts

PROC MIXED DATA=kidney PLOTS=all;
CLASS id time treat timepoint;
MODEL aix = treat*timepoint / NOINT DDFM=SATTERTH;
ESTIMATE ’diff in ch.last follow-up’

treat*timepoint 1 0 -1 -1 0 1;
ESTIMATE ’diff in average change’

treat*timepoint 1 -0.5 -0.5 -1 0.5 0.5;
REPEATED timepoint / subject=id type=un R RCORR;

RUN; QUIT;

Or simply:

LSMEANS treat*timepoint / DIFF SLICE=timepoint;
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SAS: proc mixed output

The Mixed Procedure

Model Information

Data Set WORK.KIDNEY
Dependent Variable aix
Covariance Structure Unstructured
Subject Effect id
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

id 51 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 28 29 30 31 32 33 34
35 36 37 38 39 40 41 42 43 45
46 47 48 49 51 52 53 54

time 3 after12w after24w baseline
treat 2 new old
timepoint 3 1 2 3

14:52 Thursday, February 26, 2015 6
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SAS: proc mixed output
Dimensions

Covariance Parameters 6
Columns in X 12
Columns in Z 0
Subjects 51
Max Obs Per Subject 3

Number of Observations

Number of Observations Read 153
Number of Observations Used 144
Number of Observations Not Used 9

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 1070.85454941
1 2 982.86560047 0.00144735
2 1 982.26253864 0.00009905
3 1 982.22468047 0.00000061
4 1 982.22445749 0.00000000

Convergence criteria met.

Always check that the numerical optimisation has converged.
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SAS: proc mixed output

Options R and RCORR asks that estimated residual covariance and
correlation matrices be printed.
The Mixed Procedure

Estimated R Matrix for id 1

Row Col1 Col2 Col3

1 106.23 96.3802 80.1893
2 96.3802 159.64 106.48
3 80.1893 106.48 106.38

Estimated R Correlation Matrix for id 1

Row Col1 Col2 Col3

1 1.0000 0.7401 0.7544
2 0.7401 1.0000 0.8171
3 0.7544 0.8171 1.0000
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SAS: proc mixed output

Fit Statistics

-2 Res Log Likelihood 982.2
AIC (smaller is better) 994.2
AICC (smaller is better) 994.9
BIC (smaller is better) 1005.8

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq
5 88.63 <.0001

Used for comparison of different models.
I METHOD=REML is default.
I But METHOD=ML should be used if you want to test a nested

submodel for the mean-structure by the likelihood ratio test.
BUT: Often a CONTRAST-statement could be used instead.
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SAS: proc mixed output
At last: Parameter estimates and tests.

Solution for Fixed Effects

Standard
Effect time treat Estimate Error DF t Value Pr > |t|
Intercept 24.3431 2.0778 49.4 11.72 <.0001
treat new -2.0547 2.8988 48.9 -0.71 0.4818
treat old 0 . . . .
time after12w 1.0887 1.7658 46.2 0.62 0.5406
time after24w 3.0895 1.4960 44.5 2.07 0.0448
time baseline 0 . . . .
time*treat after12w new -1.9493 2.4822 45.8 -0.79 0.4363
time*treat after12w old 0 . . . .
time*treat after24w new -3.6078 2.1231 45.3 -1.70 0.0961
time*treat after24w old 0 . . . .
time*treat baseline new 0 . . . .
time*treat baseline old 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
treat 1 47 1.84 0.1815
time 2 45.3 1.02 0.3690
time*treat 2 45.3 1.48 0.2394
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Outline

Introduction

Basics of longitudinal data (FLW:2011, ch. 1-2)

Linear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

SAS proc mixed (FLW:2011, ch. 5.9)

Baseline adjustment (FLW:2011, ch. 5.6-5.7)

Covariance pattern models (FLW:2011, ch. 7)
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Baseline measurements
In randomized clinical trials, the first measurement is often a
baseline measurement.

I The group means must be equal at baseline.
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Hypothetical comparison of two treatment groups

What happens if we ignore the baseline problem?
I The non-existing difference at baseline makes the overall

treatment effect appear smaller. Thus, the power of the test is
reduced.

So should we leave out the baseline measurement?
I We loose information about change over time and again the

power of the test of treatment effect is reduced.
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Classical approaches for handling baseline

Vickers & Altman, Analysing controlled clinical trials with baseline
follow-up measurements, BMJ 323, 1123–1124.

Three possibilities: 1. End point, 2. Change, 3. ANCOVA
1. Discard baseline, ok if correlation is small
2. Subtract baseline, ok if correlation is large
3. Condition on baseline, using it as covariate, always ok.

Conclusion: ANCOVA is most efficient.
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Why ANCOVA is superior
For simplicity assume treatment (x = 1) vs placebo (x = 0) with
only one time of follow-up (t1 = 0, t2 = 1),

Yij = β1 + β2 · tj + β3 · x · tj + εij

where (
εi1
εi2

)
∼ N

((
0
0

)
,

(
σ2 σ2ρ
σ2ρ σ2

))

Implied residual variances for the three models.
1. Var(Y2) = σ2

2. Var(Y2 −Y1) = 2σ2(1− ρ)
3. Var(Y2|Y1) = σ2(1− ρ2)

Note: The assumption that the variance is constant over time could be
dropped.
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ANCOVA with multiple times of follow-up

Different effects of baseline at different time points due to stronger
correlation between baseline and early follow up.

I The model should include a baseline*time interaction.

Example:

PROC MIXED DATA=kidney0;
CLASS id time treat timepoint;
MODEL aix = aix0*time treat*time / NOINT DDFM=SATTERTHWAITE;
LSMEANS treat*time / DIFF SLICE=time;
REPEATED timepoint / SUBJECT=id TYPE=UN R RCORR;

RUN;
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Eplerenone: ANCOVA

Differences of Least Squares Means

Standard
Effect time treat _time _treat Estimate Error DF t Value Pr > |t|
time*treat after12w new after12w old -2.3494 2.5643 44 -0.92 0.3646
time*treat after12w new after24w new -0.2999 1.5388 44.8 -0.19 0.8464
time*treat after12w new after24w old -4.5328 2.3048 63.6 -1.97 0.0536
time*treat after12w old after24w new 2.0495 2.3410 64.8 0.88 0.3845
time*treat after12w old after24w old -2.1834 1.5312 43.1 -1.43 0.1611
time*treat after24w new after24w old -4.2329 2.0762 43.7 -2.04 0.0475

Tests of Effect Slices

Num Den
Effect time DF DF F Value Pr > F
time*treat after12we 1 44 0.84 0.3646
time*treat after24we 1 43.7 4.16 0.0475

Conclusion: Significant difference at last follow-up. Estimated
difference in change over time -4.23% (95% CI: -8.42% to -0.05%,
P=0.0475) in favor of Eplerenone. So hopefully the protocol dictated
ANCOVA with this particular parameter of interest.
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Eplerenone: ANCOVA

Note: Covariance estimates change substantially when baseline is
included as a covariate (it explains a lot of variation in the data).
The Mixed Procedure

Estimated R Matrix for id 1

Row Col1 Col2

1 74.1578 34.2828
2 34.2828 47.2484

Estimated R Correlation
Matrix for id 1

Row Col1 Col2

1 1.0000 0.5792
2 0.5792 1.0000
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A fourth option

Constrained linear mixed model (cLMM):
I Analysis of response profiles.
I include baseline as a response, but redefine covariates so that
identical group means at baseline are modeled.

Liu et al: Should baseline be a covariate or dependent variable in
analyses of change from baseline in clinical trials?,
Statist. Med. 28, 2509–2530, (2009):

Conclusions:
I similar power to ANCOVA (with no missing data).
I by default handles missing data (MAR) optimally.

But: ANCOVA has a computational advantage, so . . .
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cLMM parametrisation

Treatment = Standard Treatment = Eplerenone
t=0 β1 β1 + 0
t=12 β1 + β2 β1 + 0 + β2 + β4
t=24 β1 + β3 β1 + 0 + β3 + β5

I Intercept.
I Time effect with standard treatment
I difference between groups at baseline = 0!
I Interactions (differences in time-effects)
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Eplerenone: cLMM

DATA kidney;
SET kidney;
timenew=’zero0’;
IF week EQ 5 AND treat EQ ’new’ THEN timenew =’week12’;
IF week EQ 8 AND treat EQ ’new’ THEN timenew=’week24’;
RUN;

PROC MIXED DATA=kidney;
CLASS id time timenew timepoint;
MODEL aix = time timenew / SOLUTION CL DDFM=SATTERTHWAITE;
REPEATED timepoint / SUBJECT=id TYPE=UN R RCORR;

RUN;
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Eplerenone: cLMM output

Solution for Fixed Effects

Standard
Effect time timenew Estimate Error DF t Value Pr > |t|
Intercept 23.2879 1.4425 50 16.14 <.0001
time after12we 1.2017 1.7575 46.8 0.68 0.4975
time after24we 3.3608 1.4450 48.3 2.33 0.0243
time baseline 0 . . . .
timenew week12 -2.1552 2.4637 46 -0.87 0.3862
timenew week24 -4.1247 1.9931 45.9 -2.07 0.0442
timenew zero0 0 . . . .

Conclusion: Significant difference at last follow-up. Estimated
difference in change over time -4.12% (95% CI: -8.14% to -0.11%,
P=0.0442) in favor of Eplerenone.
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Eplerenone: cLMM output

Note: Covariance estimates hardly change when the constraint is
put on the mean parameters at baseline.

Estimated R Matrix for id 1

Row Col1 Col2 Col3

1 105.29 95.5196 79.4628
2 95.5196 158.77 105.76
3 79.4628 105.76 105.77

Estimated R Correlation Matrix for id 1

Row Col1 Col2 Col3

1 1.0000 0.7388 0.7530
2 0.7388 1.0000 0.8161
3 0.7530 0.8161 1.0000
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ANCOVA and cLMM interpretation

ANCOVA and cLMMs estimate the treatment effect with similar
accuracy.

I P-values and parameter estimates are very similar
I but not identical.

The models have different interpretations.
I cLMM describes the joint distribution of the response over

time including baseline.
I ANCOVA describes the response at follow-up conditional on

the baseline response.
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cLMM implies ANCOVA
Assume a cLMM for (Yi1, . . . ,Yin). That is, means described as

E(Yi1) = β1, E(Yij) = β1 + βj + Xiβn+j−1

for j = 2, . . . ,n, and with X denoting the indicator of treatment. A
similar unstructured covariance Σ is assumed for both groups.

Then the conditional distribution of (Yi2, . . . ,Yin) given Yi1 is
again a normal distribution with

E(Yij |Yi1) = β1 + βj + Xiβn+j−1 + σij/σ
2
1(Yi1 − β1)

Cov(Yij ,Yik |Yi1) = σjk −
σ1kσ1j
σ2

1

Hence the conditional model is the ANCOVA.
I Note: the treatment effects are the same in both models.

61 / 78

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Baseline in observational studies

Compare the outcomes for individuals from different groups (e.g.
gender or illness groups):

I The groups are likely to differ in many respects . . . including
the baseline outcome value!

I Differences in response profiles may be due to many factors,
and quantifications will depend on which of these are factors
are included in the model.

I Adjust for the covariates that are sensible in the context.

Is the baseline measurement a sensible covariate?

62 / 78

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Baseline in observational studies

Fitzmaurice et al. (2011)[Section 5.6]:

For example, in an observational study examining gender differences in weight
gain of infants between 12 months (baseline) and 24 months (...) At baseline
boys are on average 1 1/2 pounds heavier than girls, but there is no evidence of
a gender effect on the 12 month change in body weight, with boys and girls
both gaining approximately 5 1/4 pound. In contrast the analysis of covariance
of the same data reveals a discernible gender effect with boys showing more
weight gain than girls.
(...) the analysis of covariance is directed at the conditional question of whether
boys are expected to gain more weight than girls given that they have the same
initial weight at 12 months. (...) The reasoning is that if a boy and girl have
the same intial weight at 12 months, then there are two possibilities: (1) the
girl is initially overweight and is expected to gain less weight or (2) the boy is
initially underweight and is expected to gain more weight over the 12 months.
We advise readers to employ the analysis of covariance approach in
longitudinal settings only if the approach and its implications are fully
understood.
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Outline

Introduction

Basics of longitudinal data (FLW:2011, ch. 1-2)

Linear models for longitudinal data (FLW:2011, ch. 3 & 4)

Analysis of response profiles (FLW:2011, ch. 5)

SAS proc mixed (FLW:2011, ch. 5.9)

Baseline adjustment (FLW:2011, ch. 5.6-5.7)

Covariance pattern models (FLW:2011, ch. 7)
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The unstructured covariance

Advantages
I We make no wrong assumptions about the covariance of our

observations.
I We gain insight in the actual structure of the covariance.

Drawbacks
I We use quite a lot of parameters to describe the covariance

structure. Thus our analysis becomes less efficient.
I No good with small data sets/many time points; The results

may be unstable.
I It can only be used in case of balanced design, i.e. all subjects

have to be measured at identical times.
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Choosing a model for the covariance

Explorative data analysis suggested by FLW (2011):

1. Put up a plausible (e.g. saturated) model for the mean
2. Fit the data so far ignoring correlation (GLM).
3. Check the residuals for assessing the adequacy of the model

for the mean and in order to get an impression of the error
covariance.

4. Pick a reasonable model for the covariance
(if possible test against the unstructured model).

5. Re-check the model fit.
6. Compute estimates, confidence intervals, and p-values.
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Example: Calcium supplements

A total of 112 11-year old girls were randomized to receive either
calcium or placebo.

Outcome: BMD=bone mineral density, in g
cm2

Follow-up: every 6 months, 5 visits in total including baseline

Does calcium improve the bone gain for adolescent women?
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Individual profiles
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Analysis of response profiles

At first do not assume any specific structure
neither for the mean nor for the covariances.

I Use the saturated model as reference point.
Note: We ought to do baseline adjustment.

PROC MIXED DATA=calcium;
CLASS grp girl visit;
MODEL bmd=grp visit grp*visit / DDFM=SATTERTHWAITE;
REPEATED visit / TYPE=UN SUBJECT=girl(grp) R RCORR;
RUN;
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Output
Estimated R Correlation Matrix for girl(grp) 101 C

Row Col1 Col2 Col3 Col4 Col5
1 1.0000 0.9699 0.9414 0.9250 0.8987
2 0.9699 1.0000 0.9727 0.9585 0.9399
3 0.9414 0.9727 1.0000 0.9809 0.9592
4 0.9250 0.9585 0.9809 1.0000 0.9755
5 0.8987 0.9399 0.9592 0.9755 1.0000

Fit Statistics
-2 Res Log Likelihood -2346.3 <-----------used later

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
grp 1 109 2.55 0.1129
visit 4 97.1 258.08 <.0001
grp*visit 4 97.1 2.79 0.0303
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Stationary covariance patterns

Most available models for are for equidistant observations,
assuming both variances and correlations are stationary, i.e.

I The variances are all the same
I Correlation depend only on the time-distance between the

observations.

proc mixed Cov(Yij ,Yik) no.
type= par
CS σ2[I{j = k}+ ρ · I{j 6= k}] 2
AR(1) σ2ρ|k−j| 2
ARMA(1,1) σ2[I{j = k}+ γ · ρ|k−j|−1I{j 6= k}] 3
TOEP σ2[I{j = k}+ ρ|k−j| · I{j 6= k}] n

aka the compound symmetry, autoregressive, autoregressive moving
average, and the Toeplitz models.
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Heterogeneous covariance patterns
The assumption that the variances are stationary can be dropped
in which case we have a heterogeneous model for the variances.

I No restrictions on the variances
I Correlation depend only on the time-distance between the

observations.

proc mixed no.
type= Cov(Yij ,Yik) par
CSH σjσk [I{j = k}+ ρ · I{j 6= k}] n + 1
ARH(1) σjσkρ

|k−j| n + 1
TOEPH σjσk [I{j = k}+ ρ|k−j| · I{j 6= k}] 2n − 1
ANTE(1) σjσk

∏k−1
l=j ρl 2n − 1

aka the heterogeneous compound symmetry, heterogeneous
autoregressive, the heterogeneous Toeplitz, and the antedependence
covariance sturctures.
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Autoregressive covariance structure in SAS

Fit the calcium data with:

PROC MIXED DATA=calcium;
CLASS grp girl visit;
MODEL bmd=grp visit grp*visit / DDFM=SATTERTHWAITE;
REPEATED visit / TYPE=AR(1) SUBJECT=girl(grp) R RCORR;
RUN;

Note: Similar syntax is valid for the other types of covariance
patterns in the table above.
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Output from TYPE=AR(1) structure

Estimated R Correlation Matrix for girl(grp) 101 C

Row Col1 Col2 Col3 Col4 Col5
1 1.0000 0.9708 0.9425 0.9150 0.8883
2 0.9708 1.0000 0.9708 0.9425 0.9150
3 0.9425 0.9708 1.0000 0.9708 0.9425
4 0.9150 0.9425 0.9708 1.0000 0.9708
5 0.8883 0.9150 0.9425 0.9708 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate
AR(1) girl(grp) 0.9708
Residual 0.004412

Fit Statistics
-2 Res Log Likelihood -2318.6 <-----------used later

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
grp 1 113 2.74 0.1005
visit 4 382 233.91 <.0001
grp*visit 4 382 2.86 0.0232
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Comparison of covariance structures
Use the likelihood (either of REML or ML):

I Better fitting models have large values of likelihood L and
therefore small values of deviance: −2 log L

I Compute differences in deviances (∆ = −2 log Q) and
compare to a χ2-distribution with df= ∆no. params.

Note: Only nested models can be compared.
I We can use the unstructured covariance as reference point

since it contains all other models as submodels.

Example: AR vs UN

−2 log Q = 2346.3− 2318.6 = 27.7
∼ χ2(15− 2) = χ2(13)⇒ P = 0.01
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Comparison of covariance structures

Model -2 log L par. −2 log Q df P
UN -2346.3 15

ARMA(1,1) -2318.6 3 27.7 12 0.006

AR(1) -2318.6 2 27.7 13 0.010

CS -2188.8 2 129.8 13 < 0.0001

Better stick to the unstructured covariance.

(Or try ARH(1) since the variances seem to increase with time).
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Predicted mean time profiles

Note: Estimated profiles are almost identical for all choices of
covariance structures. In fact, for balanced data, they agree completely
(since they are equal to the group*time-averages).
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Tests of treatment effect

BUT: We cannot make inference from profiles alone

Tests of the interaction term group*visit:.

Covariance structure Test statistic ∼ distribution P value?

Independence 0.35 ∼ F(4,491) 0.84
Compound symmetry 5.30 ∼ F(4,382) 0.0004
Autoregressive 2.86 ∼ F(4,382) 0.023
Unstructured 2.72 ∼ F(4,107) 0.034

I Confidence intervals and tests depend on the covariance.
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