Faculty of Health Sciences

Linear mixed models

Analysis of repeated measurements, 10th March 2015

Julie Lyng Forman & Lene Theil Skovgaard Department of Biostatistics, University of Copenhagen

Program

Topics:

- ► Random effects & variance components
- ► Linear mixed models in general.

Read: Fitzmaurice et al. (2011): chapters 8, 21, 22.

Examples:

- Random effects ANOVA
- Multi-level models
- Random regression
- ► Cross-over trials
- Comparison of measurement methods

1/80

NIVERSITY OF COPENHAGEN

MENT OF BIOSTATISTICS UNIVERSITY OF COPENHAC

2/80

4 / 80

Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods

What are repeated measurements?

DEPARTMENT OF BIOSTATISTI

Repeated measurements refer to data where the same outcome has been measured in different situations (or at different spots) on the same individuals.

► Special case: longitudinal means repeatedly over time.

DEPARTMENT OF BIOSTATISTIC

What is clustered data?

Repeated measurements are termed **clustered data** when the same outcome is measured **on groups of individuals** from the same families/workplaces/school classes/villages/etc.

DEPARTMENT OF BIOSTATISTICS

Analysis of repeated measurements

Many applications:

- Longitudinal data
- Treatments applied to multiple limbs, teeth, etc within the same person.
- ► Cross-over trials.
- Cluster randomized trials / multi-center studies.
- Comparisons / reliability of measurement methods.

ATT: Measurements belonging to the same subject/cluster are correlated. If we fail to take this correlation into account we will experience:

- p-values that are too small or too large.
- confidence intervals that are too wide or too narrow.

UNIVERSITY OF COPENHAGEN

Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods

One-way analysis of variance - with random variation

Comparison of k groups or clusters, satisfying:

- The groups are of no individual interest and it is of no relevance to test whether they have identical means.
- The groups may be thought of as representatives from a population, that we want to describe.

Measurements belonging to the same subject/cluster tend to be correlated (look alike) due to e.g.

- Environmental variation.
 - Between regions, hospitals or countries.
- ► Biological variation.

8 / 80

Between individuals, families or animals.

DEPARTMENT OF BIOSTATIST

Example: Rabbit data

Random effects anova (the two-level model)

We let each rabbit have its own level of swelling described as

$$Y_{rs} = A_r + \varepsilon_{rs}$$

 We assume that these individual levels are randomly sampled from a normally distributed population,

$$A_r \sim \mathcal{N}(\mu, \omega_B^2)$$

► The error terms are considered to be independent normal,

$$\varepsilon_{rs} \sim \mathcal{N}(0, \sigma_W^2)$$

The rabbit levels are so-called random effects and the variances ω_B^2 and σ_W^2 are so-called variance components describing the variance **between rabbits** and **within rabbits**, respectively.

Implications of random effects anova

All observations are considered as randomly sampled measurements from the **same population**. Thus, the model implies that all measurements follow the same normal distribution:

$$Y_{rs} \sim N(\mu, \omega_B^2 + \sigma_W^2)$$

- Population mean μ , the grand mean.
- Population variance $\omega_B^2 + \sigma_W^2$, the total variation.

But: Measurements made on the same rabbit are correlated with the so-called intra-class correlation

$$\mathsf{Corr}(y_{r1}, y_{r2}) = \rho = \frac{\omega_B^2}{\omega_B^2 + \sigma_W^2}$$

Compound symmetry

12/80

The implied covariance of the repeated measurements has a compound symmetry-structure:

$$\Sigma = (\omega_B^2 + \sigma_W^2) \cdot \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & & \vdots \\ \rho & \rho & \dots & 1 \end{pmatrix}$$

In particular all pairs of spots on the same rabbit are assumed to be equally correlated (with the intra-class correlation).

▶ We say that the spots are exchangeable.

Note: If this is not the case, an unstructured covariance migth fit the data better. Say, if some spots are expected to respond more similarly than others.

Random effects ANOVA in PROC MIXED

RANDOM rabbit; /* or REPEATED spot / TYPE=CS SUBJE RUN; Covariance Parameter Estimates	CCT=rabbit; */	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cov Parm Estimate rabbit 0.3304 Residual 0.5842		Asymptotic standard errors can be obtained with: PROC MIXED COVTEST DATA=rabbit;
Solution for Fix	ted Effects	
Standard Effect Estimate Error Intercept 7,3667 0,2670	DF t Value Pr > t 5 27 59 < 0001	 95% CI for Intra-rabbit variation σ_W^2: (0.37,1.04). 95% CI for Inter-rabbit variation ω_B^2: (0.06,2.48).
11/80		BUT: The coverage may be poor in small samples.

16/80

Estimating variance components

In balanced data we have explicit formulae*:

$$\tilde{\sigma}_W^2 = \mathsf{MS}_W$$
 and $\tilde{\omega}_B^2 = \mathsf{MS}_B - \frac{\mathsf{MS}_W}{n}$

- \blacktriangleright *n* is the number of observations in each cluster
- ► MS_W and MS_B are Mean Squares within and between clusters, defined as in one-way ANOVA.
- * This is deduced from

$$E(\mathsf{MS}_B) = \omega_B^2 + \frac{\sigma_W^2}{n}$$
$$E(\mathsf{MS}_W) = \sigma_W^2$$

Describing variation

Typical differences between spots on the same rabbit:

$$y_{rs_1} - y_{rs_2} = \varepsilon_{rs_1} - \varepsilon_{rs_2}$$
$$\sim N(0, 2\omega_W^2)$$

• Normal region: $\pm 2\sqrt{2\omega_W^2} = \pm 2.16 \ cm^2$

Estimation of variance components

Typical differences between spots on **different** rabbits:

$$y_{r_1s_1} - y_{r_2s_2} = \alpha_{r_1} - \alpha_{r_2} + \varepsilon_{r_1s_1} - \varepsilon_{r_2s_2}$$
$$\sim N(0, 2\sigma_B^2 + 2\omega_W^2)$$

► Normal region:
$$\pm 2\sqrt{2\sigma_B^2 + 2\omega_W^2} = \pm 2.70 \ cm^2$$

DEPARTMENT OF BIOSTATISTI

Why not use traditional one-way anova?

```
PROC GLM DATA=rabbit;
CLASS rabbit spot;
MODEL swelling = rabbit / NOINT SOLUTION;
ESTIMATE 'grand mean' rabbit 0.167 0.167 0.167 0.167 0.167 0.167;
RUN;
```

- Test of $H_0: \mu_1 = \ldots = \mu_6: P = 0.004.$
- ► Estimate of grand mean: 7.367 (0.127)

But: We are not interested in these particular 6 rabbits, only in rabbits in general, as a **species**!

► Estimate from mixed model: 7.367 (0.267)

One-way anova with and without random variation

Classical one-way anova

- \blacktriangleright The rabbit means μ_r are fixed parameters,
 - supposedly of an interest of their own.
- We say that the rabbit factor is a fixed effect.

Random effects one-way anova

- The rabbit levels A_r are considered random and their population mean μ and variance $\omega_B^2 + \sigma_W^2$ is the major interest.
- We say that the rabbit factor is a random effect.
- (If data is from a pilot study used in the planning of some trial, the intra-class correlation will also be of interest).

Fixed or random effect?

How do we decide whether a **factor** should be modeled as fixed or random?

Fixed

17/80

- The specific values of the factor have been predetermined when planning the study.
- ► Allows inference for these particular values only.
- ► Demands a decent number of observations in each group.

Random

- ► A representative sample of values of the factor is present.
- Allows inference to be extended beyond the values in the experiment and to the population they were sampled from.

Estimation of individual rabbit means

Sometimes estimates of individual random effects are used for e.g. prediction of future disease status.

How do we estimate them?

20/80

- Simple averages $\bar{y}_{r.}$ of the individual measurements.
- Best unbiased linear predictors (BLUPs) are weighted averages of the individual and the population mean:

$$\frac{\tilde{\omega}_B^2}{\tilde{\omega}_B^2 + \frac{\tilde{\sigma}_W^2}{S}} \bar{y}_{r.} + \frac{\frac{\tilde{\sigma}_W^2}{S}}{\tilde{\omega}_B^2 + \frac{\tilde{\sigma}_W^2}{S}} \bar{y}_{s.}$$

They have been **shrinked** towards the grand mean, $\bar{y}_{..}$; We are *borrowing strenght from the neighbours*.

19 / 80

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTI

BLUPs vs averages

Reduced data

DEPARTMENT OF BIOSTATISTICS

Note: We see larger shrinkage for rabbit no. 2 when the 3 smallest measurements from this rabbit have been removed.

UNIVERSITY_OF_COPENHAGE

21/80

General variance component models

Generalisations of ANOVA and GLM models involving several sources of random variation, so-called variance components.

Examples of sources of random variation:

- Environmental variation.
 - Between regions, hospitals or countries.
- Biological variation.
 - Between individuals, families or animals.
- Within-individual variation.
 - ▶ Between arms, teeth, days.
- Variation due to uncontrollable circumstances.
 - E.g. time of day, temperature, observer.
- Measurement error.

Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

22/8

Comparing measurement methods

Multilevel models

Variance component models are also called multilevel models.

- Levels are most often hierarchical.
- ▶ We have variation, i.e. a variance component, on each level.
- ► And possibly systematic effects (covariates) on each level.

individual observation	\rightarrow	context/cluster	\rightarrow	context/cluster
level 1	\rightarrow	level 2	\rightarrow	level 3
students	\rightarrow	classes	\rightarrow	schools
patient	\rightarrow	clinic	\rightarrow	regions
time	\rightarrow	subject	\rightarrow	
spot	\rightarrow	rabbit	\rightarrow	<pre>S</pre>
24 / 80				

-3

3

23

1

1 3

1 2 2

1 2

4

1 3

2

Example: A three-level model

Outcome: Number of nuclei per cell in the rat pancreas (used for the evaluation of cytostatica)

- ▶ R = 4 rats.
- S = 3 sections for each rat.
- F = 5 randomly chosen fields from each section.

level 1	\rightarrow	level 2	\rightarrow	level 3
fields	\rightarrow	sections	\rightarrow	rats
σ^2		$ au^2$		ω^2

25 / 80

NIVERSITY OF COPENHAGEN DEPARTME

Estimated variation and correlation

Level	Variation	Estimate
3	Rats (ω^2)	0.0179 (8.2%)
2	Sections (au^2)	0.0029 (1.3%)
1	Fields (σ^2)	0.1968 (90.4%)
	Total	0.2176 (100%)

Measurements on	Correlation	Typical differences
Different rats Different sections	0	$\pm 2\sqrt{2(\omega^2 + \tau^2 + \sigma^2)} = \pm 1.319$
of the same rat	$\frac{\omega^2}{\omega^2 + \tau^2 + \sigma^2} = 0.082$	$\pm 2\sqrt{2(\tau^2 + \sigma^2)} = \pm 1.264$
of the same section	$\frac{\omega^2 + \tau^2}{\omega^2 + \tau^2 + \sigma^2} = 0.096$	$\pm 2\sqrt{2\sigma^2} = \pm 1.255$

Merits of multilevel models

26/80

28/80

2.0

1.8

1.6

 1.4^{-1}

1.2

0.8

0.6

0.4

0.2

0.0

inclei 1.0 1

2

3

3

1 2 3

1

We get a better understanding of the various sources of variation.

3

3

23

2

2

rat number

2

3

23

 1 2

3

3

Effects *within* may be estimated more precisely (higher power), since some sources of variation are eliminated, e.g. by making comparisons within a family. This is analogous to the **paired design** situation.

When planning investigations, estimates of the variance components are needed in order to compare the power of various designs, and help us decide

- How many replicates do we need at each level?
- Should we randomize entire clusters or randomize within the clusters?

DEPARTMENT OF BIOSTATISTIC

Design considerations

(Note the analogy with cluster-randomized trials.)

Plan an experiment with:

- ► R rabbits.
- ► S spots for each rabbit.
- $R \times S$ measurements.

Std. error of grand mean,

decreases with R and S.

The different curves correspond to S varying from 1 to 10.

Effective sample size

How many rabbits would we need to obtain the same precision in estimating the grand mean if we had **only one measurement** on each of R_1 rabbits?

Solve the equation for $Var(\overline{y})$ to get:

$$R_1 = \frac{R \times S}{1 + \rho(S - 1)}$$

where ρ is the within rabbit correlation.

• Estimate:
$$\rho = \frac{\omega_B^2}{\omega_B^2 + \sigma_W^2} = \frac{0.3304}{0.3304 + 0.5842} = 0.361 \Rightarrow R_1 = 12.8$$

I.e. one measurement on each of thirteen rabbits gives the same precision as six measurements on each of six rabbits.

NIVERSITY OF COPENHAGEN

29 / 80

Case study: Cortisol

- Outcome: Concentration of cortisol in salvia samples taken morning and evening in workers in Aarhus amt and kommune in 2007 (3536 participants) with similar follow-up in 2009 (2408 participants)
- Interest: effect of stressors: lifeevents, Effort Reward Index

level	variation	covariates
3	between persons	gender, age
2	within person: between days	bmi, stressors, year
1	within person: within days	time (morning/evening)

Sample data

UNIVERSITY OF COPENHAGE

From 8 randomly selected men:

DEPARTMENT OF BIOSTATISTIC

Multilevel analysis

```
PROC MIXED DATA=prism COVTEST; WHERE sex EQ 'male';
CLASS id year time;
MODEL logcortisol = time / SOLUTION CL DDFM=SATTERTH;
RANDOM id id*year;
RUN;
```

Covariance Parameter Estimates

Cov Parm	Estimate	Std.Error	Z Value	Pr > Z
id	0.05993	0.01266	4.73	<.0001
id*year	0			
Residual	0.5385	0.01794	30.01	<.0001

The between days-variance component estimate is a zero!

Level 2 covariates (stressors) can only have very little impact on individual cortisol koncentrations!

Negative variance components

In case one of the variance component estimates becomes negative, SAS repports a zero.

What does it mean?

- The zero-estimate may be a chance finding due to statistical uncertainty.
- Or it might be the result of truly negative correlation within clusters - e.g. from competition (plants grown in same pot).

What can we do about it?

- ▶ Re-fit the model without the problematic random effect.
- Use a covariance pattern model which allows for negative correlation (e.g. an unstructured covariance).
- Include more covariates at the lower levels.

UNIVERSITY OF COPENHAGEN

33 / 80

DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN

Estimated time-effect

			Solutio	on for	Fixed Ef	fects			
			Standard						
Effect	time	Estimate	Error	DF	t Value	Pr > t	Alpha	Lower	Upper
Intercept		0.4106	0.02209	448	18.59	<.000	1 0.05	0.3672	0.4540
ime	morn	2.0137	0.02872	1305	70.12	<.000	1 0.05	1.9573	2.0700
time	even	0	•					•	•
			Туре З Те	ests o	f Fixed E	ffects			
			Nun	1	Den				
		Effect	DF	7	DF F	Value	Pr > F		
		time	1	1 1	305 49	16.89	<.0001		

Estimates show that median levels of kortisol is about $\exp(2.0137)\simeq 7.49$ times higher in the morning than in the evening.

We should account for exact time of measurement!

Outline

34 / 80

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

36 / 80

Comparing measurement methods

DEPARTMENT OF BIOSTATISTI

Specification of linear mixed models (LMMs)

Mixed refers to mixed fixed and random effects.

Systematic variation

 covariates: time, treatment, gender, age, etc., describing population parameters.

Random variation:

- Random effects, describing subject specific parameters.
- Serial correlation
- Measurement error

Interactions between systematic and random effects are always random effects.

UNIVERSITY OF COPENHAGEN

Implied covariance for LMMs

The covariance of the repeated measurements on subject/cluster i is given by the general formula:

$$V_i = Z_i^T G Z_i + R_i$$

Note:

- This is the so-called V-matrix.
- Print with option vcorr in proc mixed.

Technical model description for LMMs

Model repeated outcomes on subject/cluster i as:

$$Y_i = X_i\beta + Z_ib_i + \varepsilon_i$$

- Systematic effects β with designmatrices X_i .
- Random effects b_i with designmatrices Z_i .
- \blacktriangleright Possibly dependent residual error terms ε_i

We assume that the b_i 's and ε_i 's are independent normally distributed with mean zero and covariance matrices given by:

- The G-matrix: $\operatorname{Var}(b_i) = G$.
- The R-matrix: $Var(\varepsilon_i) = R$.

SAS: PROC MIXED

38 / 80

40 / 80

model: describes the mean value structure
 (i.e. covariates / fixed effects)
 random: describes the random effects
repeated: describes the residual covariance.

Very flexible modeling framework!

Example: It is possible to model, e.g.

- ▶ longitudinal series of measurements (2 levels) ...
- with repeated series on each subject and with different treatments along the way (3 levels) ...
- ▶ and subjects belonging to different clusters (4 levels).

DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Nonidentifiability

Warning: Make sure you understand your model!

 Modeling random effects together with a residual error covariance may result in unidentifiable covariance parameters, i.e. nonconvergence, unless done with some care.

Example: Compound symmetry can be specified as either of:

- ► RANDOM id;
- RANDOM intercept / SUBJECT=id;
- ▶ REPEATED time / TYPE=CS SUBJECT=id;

in case two of these lines are included in the same program, it will not converge.

Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

42/8

44 / 80

DEPARTMENT OF BIOSTATISTICS

Comparing measurement methods

Calcium data

NIVERSITY OF COPENHAGEN

41/80

The time course looks reasonably linear, but maybe the individual girls have different growth rates ...

Random regression

We let each girl have her own level A_i and her own slope B_i

We **assume** these individual 'parameters', A_i and B_i ,

► the random effects

follow a bivariate normal distribution in the population

$$\left(\begin{array}{c}A_i\\B_i\end{array}\right) \sim N_2\left(\left(\begin{array}{c}\alpha_{g(i)}\\\beta_{g(i)}\end{array}\right), \left(\begin{array}{cc}\tau_a^2 & \omega_{ab}\\\omega_{ab} & \tau_b^2\end{array}\right)\right)$$

The covariance is the so-called G-matrix:

it describes the **population variance** of the lines, i.e. the inter-individual variation.

PROC MIXED: random regression

PROC MIXED DATA=calcium;

CLASS grp girl;

MODEL bmd=visit1 grp*visit1 / SOLUTION DDFM=SATTERTHWAITE; RANDOM intercept visit1 / TYPE=UN SUBJECT=girl(grp) G; RUN;

Individual intercepts and slopes must be specified in the random-statement.

- Here visit is used as a continuous covariate, with the intercept moved to visit=1. Due to randomization at baseline the main effect of grp omitted so that intercepts are the same in both groups.
- Note that type=un refers to a unstructured specification of the G-matrix. If it is omitted, we may experience convergence?
- problems and sometimes totally incomprehensible results.

PARTMENT OF BIOSTATISTICS<u>UNIVERSITY OF COPENHAG</u>

48 / 80

Implied covariance

NIVERSITY OF COPENHAGEN

The random regression model implies a particular covariancestructure:

$$Cov(Y_{ij}, Y_{ik}) = Cov(A_i + B_i t_j + \varepsilon_{ij}, A_i + B_i t_k + \varepsilon_{ik})$$

=
$$Var(A_i) + (t_j + t_k)Cov(B_i, A_i) + t_j t_k Var(B_i)$$

=
$$\tau_a^2 + (t_j + t_k)\omega_{ab} + t_j t_k \tau_b^2$$

 Option v and vcorr makes SAS print the V-matrix and the associated correlation matrix.

Estimated V Matrix for girl(grp) 101 C

Row	Col1	Col2	Col3	Col4	Col5
1	0.004280	0.004207	0.004258	0.004309	0.004360
2	0.004207	0.004430	0.004405	0.004503	0.004602
3	0.004258	0.004405	0.004676	0.004698	0.004844
4	0.004309	0.004503	0.004698	0.005017	0.005086
5	0.004360	0.004602	0.004844	0.005086	0.005453

Output from random regression

Estimated G Matrix

OW	Effect	grp	girl	Col1	Col2
1	Intercept	C	101	0.004155	0.000051
2	visit1	С	101	0.000051	0.000048
Cova	riance Parame	ter Est	imates		
D	a 1 ·				

Residual 0.00012	COV Faim	Subject	Estimate
	Residual		0.000125

Fit Statistics

-2 Res	Log Li	kel	ihood	-2347.	7
AIC (sn	naller	is	better)	-2339.	7

Solution for Fixed Effects

Effect	grp	Estimate	StdError	DF	t Value	Pr > t
Intercept		0.8752	0.006149	111	142.32	<.0001
visit1		0.02245	0.001097	96	20.46	<.0001
visit1*grp	С	0.004429	0.001570	96.5	2.82	0.0058
visit1*grp	Р	0				

We find an extra increase in BMD of **0.0044 (0.0016)** g/cm^3 per half year, when giving calcium supplement.

Nonequidistant time points

- ► The girls are only seen **approximately twice a year**.
- Perhaps we get better estimates of the slopes when replacing visit with the actual age of the girl.

50 / 80

52/80

DEPARTMENT OF BIOSTATIST

Random regression, using actual age

	E	stimate	d G Matr	ix				
Row Effe 1 Inte 2 age1	ect ercept 1	grp C C	girl 101 101	Co 0.0042 0.0000	oll 208 095	Col2 0.000095 0.000179		
Covariance	e Paramet	er Esti	mates					
Cov Parm Residual	Subject	E 0	stimate .000124					
I	'it Stati	stics						
-2 Res Log I AIC (smaller	ikelihoo is bett	d er)	-2356 -2348	.3 .3				
		Solut	ion for	Fixed H	Effects	1		
Effect Intercept age11 age11*grp age11*grp	grp C P	Estimat 0.872 0.0453 0.00880	e Std 1 0.0 4 0.0 3 0.0 0	Error 06193 02151 03074	DF 111 96.2 96.8	t Va 140 2 21 3 2	lue .84 .08 .86	Pr > t <.0001 <.0001 0.0051

In this model, we quantify the effect of a calcium supplement to **0.0088 (0.0031) g/cm³** per **year**.

NIVERSITY OF COPENHAGEN

Modeling the covariance

Random regression implies a particular covariance pattern.

Does this fit the data well?

No benchmark for model comparisons:

► An unstructured covariance cannot be esimated from non-equidistant data!

Instead, non-nested models can be compared using Akaikes information criterion (AIC) which balances goodness of fit against model complexity.

Smaller values of AIC indicates a better model fit.

Results from random regression

Time variable	Difference in Slopes	P-value
visit1	0.0089 (0.0031)	0.0051
age11	0.0044 (0.0016)	0.0058
Р	0.37	0.0048

Seemingly steeper slopes than when visit was used as the time-variable.

▶ Due to quantificantion (per year vs per 1/2 year)!

Note: In some cases replacing proxy age with exact age would result in steeper slopes due to bias reduction (recall measurement error in the independent variable causes bias towards the null).

Non-equidistant covariance patterns

In case subject are measured at individual or otherwise non-equally spaced time points only a limited number of stationary covariance pattern models are available:

- ► The variance is **constant over time**.
- ▶ The correlation **depend only on the time-distance** between the observations.

proc mixed	$\operatorname{Cov}(Y_{ij}, Y_{ik})$	no.
type=		param
CS	$\sigma^2[I\{j=k\} + \rho \cdot I\{j \neq k\}]$	2
SP(POW)(ctime)	$\sigma^2 ho^{ t_{ij}-t_{ik} }$	2
SP(GAU)(ctime)	$\sigma^2 e^{- t_{ij}-t_{ik} ^2/\gamma^2}$	2
SP(LIN)(ctime)	$\sigma^{2}(1-\rho t_{ik}-t_{ij}) \cdot I\{\rho t_{ik}-t_{ij} \le 1\}]$	2

The ctime-variable must be a **numerical variable** in SAS.

DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN

Outline

Tests of treatment effect

Comparison of slopes for different covariance structures:

Covariance	AIC	Cov.par.	Difference		Random effects ANOVA (the two-level model)
structure			in slopes	Р	
Independence	-1251.3	1	0.0094 (0.0086)	0.27	Multilevel models
Compound symmetry	-2253.9	2	0.0091 (0.0020)	< 0.0001	Linear mixed models (LMMs)
Power (Autoregressive)	-2374.3	2	0.0099 (0.0030)	0.0014	Random regression
Random Regression	-2348.3	4	0.0088 (0.0031)	0.0051	Cross-over studies
Confidence inter	vals and te	ests depend	I on the covariance		Comparing measurement methods
		ests depend			54/80
RSITY OF COPENHAGEN			DEPARTMENT OF I	BIOSTATISTICS	UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

56 / 80

Example: Cross-over study of headache

Patients with chronic headache are randomized into two groups:

- Both groups receive LNMMA and placebo, on two different days, with a suitable wash-out period in-between
- Group G1 was treated first with placebo (period 1), and then with LNMMA (period 2)
- Group G2 was treated first with LNMMA (period 1), and then with placebo (period 2)

Pain was measured subjectively on a VAS-scale (small is good), at baseline and at 30, 60, 90 and 120 minutes after treatment.

Ashina, Lassen, Bendtsen, Jensen og Olesen (1999), Lancet, pp.287-289

Picture ignoring period effect and pairing

Figure 2: Mean percentage change from baseline in pain intensity on 100 mm visual analogue scale Bars=SE.

Model building for cross over study

Fixed effect:

- time, treat treat*time, period
- possibly a carry-over effect: treat*period(*time)?

Covariance structure:

We expect that observations from the same period (and same patient) are more strongly correlated when they are close in time, e.g.

Extract data

Unfortunately, we do not have access to the full data with **repeated measurements over time**.

New outcome: Difference between average follow-up measurements and baseline,

$$Y_{30} + Y_{60} + Y_{120} - 3Y_0$$

(recall, for this to be efficient the correlation must be strong).

60 / 80

Observations vs. period and treatment

Average over patients

A, P denote the treatments, 1 and 2 denote the periods

59 / 80

Model for cross-over study

For subject i, treatment t and period p:

$$Y_{tpi} = \alpha + \beta_t + \gamma_p + \delta_{tp} + b_i + \varepsilon_{tpi}$$

PROC MIXED DATA=ashina; CLASS patient group treat period; MODEL effect=treat period treat*period / S CL DDFM=SATTERTH; RANDOM intercept / SUBJECT=patient(group); RUN;

• $b_i \sim N(0, \omega_B^2)$ are the random subject effect		Soluti	ion for Fix	ed Effects				
• $\varepsilon_{tpi} \sim N(0, \sigma_W^2)$ are the residuals	Effect treat	period	Estimate	Standard Error	DF	t Value	Pr > t	
• δ_{tp} is the carry-over effect.	Intercept treat lmmma		-3.3333 -70.4667	19.4487 24.6009	14 14	-0.17 -2.86	0.8664 0.0125	
	treat placeb period	o 1	0 -16.9667	24.6009	14	-0.69	0.5017	
Parameter of interest: Treatment effect in period 1.	period treat*period lmmma	2 1	0 62.2667	40.8798	14	1.52	0.1500	
	treat*period lmmma treat*period placeb	2 o 1	0	•	•	•	•	
	treat*period placeb	o 2	0	•				2
	62 / 90							
ERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS U	UNIVERSITY OF COPENH	AGEN	_	_		_	DEPARTME	NT OF BIOSTATISTICS

Interpretation of the carry-over effect

The carry-over effect is usually interpreted as an additional effect of placebo when given after the active treatment.

Estimate 62.3, with 95% Cl (-25.4, 149.9), i.e. nonsignificant.

The carry-over effect (placebo following active) has a positive value, corresponding to a worsening of the headache.

This could be explained as a **psychological effect**, in the sense that subjects expect something better (namely what they experienced in the previous period).

Traditional approach

First test the hypothesis $H_0: \delta = 0$ (no carry-over effect):

- Unpaired T-test (G1 vs G2) with the sum of the two effects as outcome, since the group means are:
 - G1: $2\alpha + \beta + \gamma$
 - $\blacktriangleright \ \mathsf{G2:} \ 2\alpha + \beta + \gamma + \delta$

Coded as a mixed effects model

If this is accepted, test $H_1: \beta = 0$ (no treatment effect):

- Unpaired T-test (G1 vs G2) with the difference between the two effects (P1-P2) as outcome, since the group means are:
 - G1 (P+A): $(\alpha + \beta + \gamma) \alpha = \beta + \gamma$
 - G2 (A+P): $(\alpha + \gamma) (\alpha + \beta) = \gamma \beta$
- And report the estimated treatment effect.

But what if there is a carry-over effect?

64/80

DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN

Outline

Multilevel models

Comparing measurement methods

Conclusion on treatment effect

Depends on your protocol!

Method	Effect	Confidence Interval	P-value
Period 1	-8.20	(-53.99,37.59)	0.71
Period 2	-70.47	(-129.40,-11.55)	0.022
Joint*	-39.33	(-68.70,-9.97)	0.012

*assuming no carry-over effect

DEPARTMENT OF BIOSTATISTICS UNIVER

66 / 80

68 / 80

UNIVERSITY OF COPENHAGEN

65 / 80

Comparing measurement devices

Example: Peak expiratory flow rate, I/min:

 17 subjects, 2 measurement devices, two replicates with each method.

subject	Wr	ight	mini V	Vright				
id	Y_{1p1}	Y_{1p2}	Y_{2p1}	Y_{2p2}				
1	494	490	512	525				
2	395	397	430	415				
3	516	512	520	508				
-								
15	178	165	259	268 370				
16	423	372	350					
17	427	421	451	443				
Average	450.35	445.41	452.47	455.35				
SD	116.31	119.61	113.12	111.32				
Reference	: Bland a	nd Altma	n, Lancet	t (1986).				

Aim of investigation

Quantify the **precision** of each measuring device

► Variability / reproducibility.

Quantify the agreement between the two devices

- Bias of one method compared to the other.
- ► Variance of one method compared to the other.

Can the devices be used interchangably in clinic?

Simple approaches

For reliability

- Compare the replicate measuements in Bland-Altman plots* with limits of agreement, i.e.
 - Plot of difference in measurements vs average of measurements.
 - ▶ 95% normal range for typical differences.
- for each method separately.

For method comparison

- ► Compare averages in a Bland-Altman plot?
- ▶ Not good unless you also do averages in clinic!

72/80

Variance component model?

level	variation	covariates
3	between subjects (σ^2)	
2	between methods (au^2)	method
1	within methods (ω^2)	

Specified as:

$$Y_{ijk} = \mu_j + A_i + B_{ij} + \varepsilon_{ijk}$$

- $A_i \sim \mathcal{N}(0, \sigma^2)$ for subjects $i = 1, \dots, 17$,
- $B_{ij} \sim \mathcal{N}(0, \tau^2)$ for methods j = 1, 2,
- $\varepsilon_{ijk} \sim \mathcal{N}(0, \omega^2)$ for replicate k = 1, 2.

Implied covariance structure

▶ We have 4 measurements on each subject

Covariance matrix with ordering (wright1, wright2, mini1, mini2):

- $\begin{pmatrix} \sigma^{2} + \tau^{2} + \omega^{2} & \sigma^{2} + \tau^{2} & \sigma^{2} & \sigma^{2} \\ \sigma^{2} + \tau^{2} & \sigma^{2} + \tau^{2} + \omega^{2} & \sigma^{2} & \sigma^{2} \\ \sigma^{2} & \sigma^{2} & \sigma^{2} + \tau^{2} + \omega^{2} & \sigma^{2} + \tau^{2} \\ \sigma^{2} & \sigma^{2} & \sigma^{2} + \tau^{2} & \sigma^{2} + \tau^{2} + \omega^{2} \end{pmatrix}$
- We have stronger correlation between measurements made with the same method than with different methods.
- And same variance for both methods.

Analysis

Estimated variance components

PROC M CLAS	IXED D <i>A</i> S metho	ATA=wrig od id;	ht;				Covariance	Parameter E	Stimates	
MODE	L flow=	method	/ SOLUTI	EON C	L;		Cov Parm	Subject	Estimate	
RAND	OM inte	ercept m	ethod /	SUBJ	ECT=id;		Intercept	id	12542	
RUN;		1					method	id	393.57	
,							Residual		315.37	
		Solution	for Fixed Eff	fects						
			Standard				1	Fit Statisti	.CS	
Effect	method	Estimate	Error	DF	t Value	Pr > t	-2 Res Log 1	Likelihood	676.0	
Intercept		447.88	27.7519	16	16.14	<.0001		r is hottor)	601 6	
method	mini	6.0294	8.0532	16	0.75	0.4649	AIC (Smalle)	r is better)	001.0	
method	wright	0	•		•	•				
No evidence of systematic differences between the measurement						een the measurement	What does th	nis tell us abo	out the precision of the meas	urements?

76 / 80

Typical differences

75 / 80

Between replicate measurements using the same method:

$$Y_{ijk_1} - Y_{ijk_2} = \varepsilon_{ijk_1} - \varepsilon_{ijk_2}$$

$$\sim \mathcal{N}(0, 2\omega^2)$$

Limits-of-agreement: $\pm 2\sqrt{2\omega^2} \simeq \pm 50.23$.

Between measurements using the different methods:

$$Y_{ij_1k_1} - Y_{ij_2k_1} = \mu_{j_1} - \mu_{j_2} + B_{ij_1} - B_{ij_2} + \varepsilon_{ij_1k_1} - \varepsilon_{ij_2k_1} \\ \sim \mathcal{N}(\mu_{j_1} - \mu_{j_2}, 2\tau^2 + 2\omega^2)$$

Limits-of-agreement: $\mu_1 - \mu_2 \pm 2\sqrt{2\tau^2 + 2\omega^2} \simeq 6.03 \pm 75.31.$

(where we include the non-significant systematic difference).

Comparing precisions

We need a more general model:

$$Y_{ijk} = \mu_j + A_{ij} + \varepsilon_{ijk}$$

- $A_i \sim \mathcal{N}(0, \Sigma)$ for subjects $i = 1, \dots, 17$,
- $\varepsilon_{ijk} \sim \mathcal{N}(0, \omega_j^2)$ for replicate k = 1, 2.
- ► bivariate random effect.
- method-dependent residual variance.

Analysis

PROC MIXED DATA=wright; CLASS method id; MODEL flow=method / SOLUTION CL; RANDOM method / TYPE=UN SUBJECT=id G; REPEATED / TYPE=simple GROUP=method SUBJECT=id*method; RUN;

RUN;	LU / IIFI	-simple di	toor-method 50	Mini: $\hat{\omega}_2^2 = 396.44 \rightarrow \pm 2\sqrt{2\omega_2^2} \simeq \pm 56.3$
	Covariance Par	ameter Estimates		Seemingly Wright is more precise, but is the difference significant?
Cov Parm	Subject	Group	Estimate	beeningly winght is more precise, but is the underline significant.
UN(1,1) UN(2,1) UN(2,2) Residual Residual	id id method*id method*id	method mini method wright	12188 12542 13683 396.44 234.29	$F = \frac{396.44}{234.29} = 1.69 \sim F(17, 17) \rightarrow P = 0.14$
	Fit Statistic	s		Don't form too firm a conclusion with too small data.
-2 Res Log AIC (small	; Likelihood er is better)	673.8 683.8		
77 / 80				78/80
				•

Overall comparison

			Solution for Fixed Effects					
Effect	method	Estimate	Standard Error	DF	t Value	Pr > t		
Intercept	mini	447.88	28.4914	32	15.72	<.0001		
method	wright	0.0294	0.0552			. 4595		

No evidence of systematic differences between the two methods.

Typical differnces between the two methods:

$$Y_{ij_1k_1} - Y_{ij_2k_1} = \mu_{j_1} - \mu_{j_2} + A_{ij_1} - A_{ij_2} + \varepsilon_{ij_1k_1} - \varepsilon_{ij_2k_1}$$

$$\sim \mathcal{N}(\mu_{j_1} - \mu_{j_2}, \sigma_1^2 + \sigma_2^2 - 2\sigma_{12} + \omega_1^2 + \omega_2^2)$$

Limits-of-agreement: $6.0 \pm 75.3 = (-69.3, 81.3)$.

The end

80 / 80

Comparing precisions

Reproducibility (typical differences):

Wright: $\hat{\omega}_1^2 = 234.29 \rightarrow \pm 2\sqrt{2\omega_1^2} \simeq \pm 43.3$

I hope you have enjoyed the course!

