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¢ Industrial PhD at University of Copenhagen (UCPH) and Novo
Nordisk (NN) (Feb 2020- (4 maternity leave x 1))

o Title of PhD project: “Treatment effect measures for recurrent event
endpoints with and without presence of terminal events”

o Supervisors: Per Kragh Andersen (UCPH), Henrik Ravn (NN) and
Trine Saugstrup (NN)



Desire: To model recurrent event data in a world where there are
competing deaths. The underlying stochastic process could be described
by this graph,
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Topic for today: Bivariate pseudo-observations

o | will motivate our method (paper below) by an example based on
simulated data

Lifetime Data Analysis
https://dol.org/10.1007/510985-021-09533-5
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Abstract

The analysis of recurrent events in the presence of terminal events requires special
attention. Several approaches have been suggested for such analyses either using inten-
sity models or marginal models. When analysing treatment effects on recurrent events
in controlled trials, special attention should be paid to competing deaths and their
impact on interpretation. This paper proposes a method that formulates a marginal
model for recurrent events and terminal events simultaneously. Estimation is based



Let D* denote the survival time and let N*(t) denote the number of
recurrent events per subject by time t

o We assume that we have a single binary treatment covariate, Z

Due to right-censoring, we observe {N(-), D,d, Z} for
N(t) = N*(t AC), D=D*AC, 6= 1(D*<C)

Let u(t) denote the marginal mean function (in the presence of
competing risks) and S(t) denote the survival probability given by

u(t) = / S(u)dR(u
S(t)=P(D* > 1)

where dR(t) = E(dN*(t) | D* > t)
For each individual, i = 1,..., n, we observe {N;(-), D;, d;, Z;}



o We simulate data using two frailty models such that
Mot | Z,v) = vexp(vpZ)AD
dR(t| Z,v)=vexp(Z (8- vAPt(1 - exp(yp))) dt

where v > 0 is a subject specific frailty term generated from a
positive stable distribution with Laplace transform exp(—v?”),
p€(0,1]
© p controls the association between recurrent events and death
o After some math, you can show that

ue12)= | S(u] 2)dR(u | Z) = uo(t) exp(5Z)
S(t| Z) = exp (—A(t) exp(72))

where

v=00 AB(0= (080", n(t) = 35 (o0 (- 089") +1)

o Censoring is assumed to be uniform on [0, 5]



o Let n=1000, 8=0, vp = —2, p=10.9, A2 = 0.25

o How does the data look?

Status
0 (censoring) | 1 (recurrent event) | 2 (death)
Z 0 263 856 250
1 433 827 54

Table: Overview of simulated data

© More deaths with Z = 0 as opposed to Z =1
o Slightly more recurrent events with Z =0 versus Z =1



o Assume that we wish to model the recurrent events and estimate a
treatment effect (a mean ratio)

© A naive way to “handle” the competing deaths would be to treat
these as censored when fitting a model for the marginal mean for the
recurrent events

o We know that the difference between treatments in recurrent events
is solely driven by the correlation between death and recurrent
events (through p) since we have 8 =0



A cautionary tale: Simulated data

o

IS

o
5
>

w

3

-
e
Ny
&

o

0.00

Expected number of events per subject

}

N

by

Survival probability

g

}
N
by

Figure:

LHS: Nelson-Aalen estimates of the marginal mean function per treatment -
incorrectly censoring for death

RHS: Kaplan-Meier estimates of survival probability per treatment



&

Similarly, it is possible to fit a marginal (LWYY?) model of the form

w(t | Z) = po(t) exp(82)

where one treats the deaths as censoring

o This leads to 3 = —0.3056 (se(j) = 0.0614) with a corresponding
Wald test statistic of z = —4.976 (P(Z > |z|) < 0.001)

o This implies that we expect exp(—0.31) = 0.73 fewer events on
average with Z =1 versus Z =0

© But we know that 5 =0...

o We are misjudging the situation (type | error). This is due to the
relationship between the recurrent events and death. More recurrent
events imply more deaths (and vice versa)

Lin, Wei, Ying and Yang - Semiparametric regression for the mean and rate
functions of recurrent events (2000)



We suggest a two-dimensional modelling procedure that enables
inference on recurrent events and death simultaneously

((t), S(t)) is modelled conditional on the covariates Z using a
regression model based on bivariate pseudo-observations

Here, competing deaths are addressed in an appropriate way in the
analysis of recurrent events

Moreover, we gain knowledge on both u(t) and S(t) as well as their
mutual relationship



Let X; denote a survival time for subject i

We are interested in some function, f, of X = (Xi,...,X,)
Let the parameter of interest, § = E(f(X))

Assume that a sufficiently nice estimator 0 of 0 exists

S0 0 0 O

Then, the pseudo-observation for individual i is given by
0;=nb—(n—1)07",

where 0~ denotes the the estimate when leaving out individual /
o Now, f(X;) can be replaced by the pseudo-observations 0;

o Finally, 6; can be used as the outcome variable (instead of £(X;)) in
a generalized linear regression model with some link function g

g(E(f(X)|2)=¢"Z

2You can read more here: Andersen and Perme - Pseudo-observations in survival
analysis (2010)



¢ The bivariate pseudo-observation model considers the marginal
target parameter

- () 65

& As an estimator for 6, we will consider

where
)= [ S(u) dR(u)

Here R(t) denotes the Nelson-Aalen estimator of R(t) and 5(t)
denotes the Kaplan-Meier estimator of S(t)



© For a given time t € [0, 7], the pseudo-observation for subject / is

given by
- () - (70~ o D0y
5i(t) 5(t) = (n=1)57'(t)
where /i~/(-) and $7(-) are the estimates based on leaving
individual i out from the computation

o We formulate the following generalised linear model,

(t|2) T
g@(rZ)) =&
with g(x, y) = (log(x), cloglog(y)) = (log(x), log(—log(y))) and for
a covariate vector Z



o We assume that

u(t | Z) = po(t) exp(B7 2)
S(t| Z) = exp(—Ng (t) exp(v" Z))

o Then
g (u(t | Z)) _ <|og (ko(t)) + BTZ>
5(t]2) log (AG(t)) +~7Z
¢ The model parameters ¢ is estimated using generalised estimating
equations (GEE) by doing a regression of 6; on Z;



¢ In the paper, we argue that

?iSJN 57011 o))y _ (on o)
4 0 012 022 012 022
where 3 and 4 denote the estimates of 3 and ~ from the GEE
procedure
© X can be estimated using a sandwich covariance estimator
implemented in standard software (however these are expected to be
slightly conservative!)
© The bivariate normality makes everything nice in terms of hypothesis
testing



¢ Local tests
1. Ho: =0 versus H, : 3 # 0. Reject Ho if P(|U| > |3|) < a, where
¢ - and U~ N(0,1)

2. Hy:vy= 0 versus H, : v # 0. Reject Hp if P(|U| > |7|) < «, where

al ~
'y—mandU N(0,1)

< Global test
1. Ho: B=~=0versus H,: B #0or v #0. Let

global (B 'ﬁ’) i_l (?)

Y

Ho is rejected if P(Y > Tgiobat) < «, where Y is x2-distributed with
2 degrees of freedom



o Sequential test

1. Order the values of B and 4 according to absolute size. Assume that
|8] < |¥| without loss of generality

2. Let H; : n = 0 be the ordered hypotheses for n = {8,~v} with
I = {1, 2} representing the order

3. Hi is rejected if P(| max(Wi, Ws)| > |B]) < a where (Wi, W) is a
bivariate standard normal variable with unit variance and correlation
given by the correlation between 3 and %

4. If Hy is rejected, Hs is tested. H. is rejected if P(|Wa| > |7]) < a

This procedure maintains type | error control



o If we fit the bivariate pseudo-observation model to the simulated
data at time points t = (2, 3,4), we obtain the following estimates

¢ = B\ _ ( 0.0426 ¢ _ (00041  —0.0014
~\5) T \—17848)° ~ \-0.0014 0.0258
o Local tests
1. f= L =995 _ 06619 (p-value of 0.51)

611
2. 5= 5L = 48 = —11.1076 (p-value < 0.0001)

62

o Global test .
Tglobal = (B ”5/) i_l <§) = 124.1278 (pvalue < 00001)

o Sequential test
1. Start with 4 = —11.1076

2. We reject Hi since P(| max(Wi, W2)| > |5|) < 0.0001
3. We cannot reject H> since P(|Wa| > |B]) = 0.5080



¢ By using the bivariate pseudo-observation model we can disentangle
the effects of treatment on recurrent events and death

< We do not make a type | error like we do if blindly fit a LWYY
model to the data

o Moreover, we gain knowledge on how these effects are correlated.
The correlation matrix, 2, corresponding to X is given by

- 1 —0.1367
= <—0.1367 1 )

This matches the pattern we see, the negative effect on death for
Z = 0 is carried over to the effect on recurrent events (although
B = 0) through p



The bivariate pseudo-observation model is a powerful tool for
understanding treatment effects (or other covariate effects) on
recurrent events and death simultaneously

Various link functions may be chosen in the linear model
(corresponding to different estimands)

This approach actually analyses the two-dimensional (or
multi-dimensional) nature of data instead of trying to squeeze it into
an one-dimensional issue

© recurrentpseudo R-package on the way...

o Think twice before you close your eyes to mortality when conducting

a recurrent event analysis!
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