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Setting the scene

A cautionary tale

Bivariate pseudo-observation model

The cautionary tale revisited
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My PhD project :-)

⋄ Industrial PhD at University of Copenhagen (UCPH) and Novo
Nordisk (NN) (Feb 2020- (+ maternity leave x 1))

⋄ Title of PhD project:“Treatment effect measures for recurrent event
endpoints with and without presence of terminal events”

⋄ Supervisors: Per Kragh Andersen (UCPH), Henrik Ravn (NN) and
Trine Saugstrup (NN)
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Recurrent events in the presence of terminal events

Desire: To model recurrent event data in a world where there are
competing deaths. The underlying stochastic process could be described
by this graph,

0: No event 1: 1 event 2: 2 events

D: Dead
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Topic for today: Bivariate pseudo-observations

⋄ I will motivate our method (paper below) by an example based on
simulated data
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Notation

⋄ Let D∗ denote the survival time and let N∗(t) denote the number of
recurrent events per subject by time t

⋄ We assume that we have a single binary treatment covariate, Z

⋄ Due to right-censoring, we observe {N(·),D, δ,Z} for
N(t) = N∗(t ∧ C ), D = D∗ ∧ C , δ = I (D∗ ≤ C )

⋄ Let µ(t) denote the marginal mean function (in the presence of
competing risks) and S(t) denote the survival probability given by

µ(t) = E (N∗(t)) =

∫ t

0

S(u−)dR(u)

S(t) = P(D∗ > t)

where dR(t) = E (dN∗(t) | D∗ ≥ t)

⋄ For each individual, i = 1, . . . , n, we observe {Ni (·),Di , δi ,Zi}
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A cautionary tale: Simulated data

⋄ We simulate data using two frailty models such that

λD(t | Z , ν) = ν exp(γDZ )λ
D
0

dR(t | Z , ν) = ν exp
(
Z
(
β − νλD

0 t(1− exp(γD)
))

dt

where ν > 0 is a subject specific frailty term generated from a
positive stable distribution with Laplace transform exp(−νρ),
ρ ∈ (0, 1]

⋄ ρ controls the association between recurrent events and death

⋄ After some math, you can show that

µ(t | Z ) =
∫ t

0

S(u | Z ) dR(u | Z ) = µ0(t) exp(βZ )

S(t | Z ) = exp
(
−ΛD

0 (t) exp(γZ )
)

where

γ = γDρ, ΛD
0 (t) =

(
λD
0 t

)ρ
, µ0(t) =

1

λD
0

(
− exp

(
−
(
λD
0 t

)ρ)
+ 1

)
⋄ Censoring is assumed to be uniform on [0, 5]
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A cautionary tale: Simulated data

⋄ Let n = 1000, β = 0, γD = −2, ρ = 0.9, λD
0 = 0.25

⋄ How does the data look?
Status

Z
0 (censoring) 1 (recurrent event) 2 (death)

0 263 856 250
1 433 827 54

Table: Overview of simulated data

⋄ More deaths with Z = 0 as opposed to Z = 1

⋄ Slightly more recurrent events with Z = 0 versus Z = 1
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A cautionary tale: Simulated data

⋄ Assume that we wish to model the recurrent events and estimate a
treatment effect (a mean ratio)

⋄ A näıve way to “handle” the competing deaths would be to treat
these as censored when fitting a model for the marginal mean for the
recurrent events

⋄ We know that the difference between treatments in recurrent events
is solely driven by the correlation between death and recurrent
events (through ρ) since we have β = 0
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A cautionary tale: Simulated data
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Figure:
LHS: Nelson-Aalen estimates of the marginal mean function per treatment -
incorrectly censoring for death
RHS: Kaplan-Meier estimates of survival probability per treatment
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A cautionary tale: Simulated data

⋄ Similarly, it is possible to fit a marginal (LWYY1) model of the form

µ(t | Z ) = µ0(t) exp(βZ )

where one treats the deaths as censoring

⋄ This leads to β̂ = −0.3056 (se(β̂) = 0.0614) with a corresponding
Wald test statistic of z = −4.976 (P(Z̃ > |z |) < 0.001)

⋄ This implies that we expect exp(−0.31) = 0.73 fewer events on
average with Z = 1 versus Z = 0

⋄ But we know that β = 0...

⋄ We are misjudging the situation (type I error). This is due to the
relationship between the recurrent events and death. More recurrent
events imply more deaths (and vice versa)

1Lin, Wei, Ying and Yang - Semiparametric regression for the mean and rate
functions of recurrent events (2000)
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A two-dimensional approach to a complex reality:
The bivariate pseudo-observation model

⋄ We suggest a two-dimensional modelling procedure that enables
inference on recurrent events and death simultaneously

⋄ (µ(t),S(t)) is modelled conditional on the covariates Z using a
regression model based on bivariate pseudo-observations

⋄ Here, competing deaths are addressed in an appropriate way in the
analysis of recurrent events

⋄ Moreover, we gain knowledge on both µ(t) and S(t) as well as their
mutual relationship
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Quick intro to pseudo-observations2

⋄ Let Xi denote a survival time for subject i

⋄ We are interested in some function, f , of X = (X1, . . . ,Xn)

⋄ Let the parameter of interest, θ = E (f (X ))

⋄ Assume that a sufficiently nice estimator θ̂ of θ exists

⋄ Then, the pseudo-observation for individual i is given by

θ̂i = nθ̂ − (n − 1)θ̂−i ,

where θ̂−i denotes the the estimate when leaving out individual i

⋄ Now, f (Xi ) can be replaced by the pseudo-observations θ̂i

⋄ Finally, θ̂i can be used as the outcome variable (instead of f (Xi )) in
a generalized linear regression model with some link function g

g(E (f (X ) | Z )) = ξTZ

2You can read more here: Andersen and Perme - Pseudo-observations in survival
analysis (2010)
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Bivariate pseudo-observation model I

⋄ The bivariate pseudo-observation model considers the marginal
target parameter

θ =

(
µ(t)
S(t)

)
=

(
E (N∗(t))

E (I (D∗ > t))

)
⋄ As an estimator for θ, we will consider

θ̂ =

(
µ̂(t)

Ŝ(t)

)
where

µ̂(t) =

∫ t

0

Ŝ(u−) dR̂(u)

Here R̂(t) denotes the Nelson-Aalen estimator of R(t) and Ŝ(t)
denotes the Kaplan-Meier estimator of S(t)
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Bivariate pseudo-observation model II

⋄ For a given time t ∈ [0, τ ], the pseudo-observation for subject i is
given by

θ̂i =

(
µ̂i (t)

Ŝi (t)

)
=

(
nµ̂(t)− (n − 1)µ̂−i (t)

nŜ(t)− (n − 1)Ŝ−i (t)

)
where µ̂−i (·) and Ŝ−i (·) are the estimates based on leaving
individual i out from the computation

⋄ We formulate the following generalised linear model,

g

(
µ(t | Z )
S(t | Z )

)
= ξTZ

with g(x , y) = (log(x), cloglog(y)) = (log(x), log(− log(y))) and for
a covariate vector Z
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Bivariate pseudo-observation model III

⋄ We assume that

µ(t | Z ) = µ0(t) exp(β
TZ )

S(t | Z ) = exp(−ΛD
0 (t) exp(γ

TZ ))

⋄ Then

g

(
µ(t | Z )
S(t | Z )

)
=

(
log (µ0(t)) + βTZ
log

(
ΛD
0 (t)

)
+ γTZ

)
⋄ The model parameters ξ is estimated using generalised estimating

equations (GEE) by doing a regression of θ̂i on Zi
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Bivariate pseudo-observation model IV

⋄ In the paper, we argue that(
β̂
γ̂

)
as∼ N

((
β
γ

)
,

(
σ11 σ12

σ12 σ22

))
, Σ =

(
σ11 σ12

σ12 σ22

)
,

where β̂ and γ̂ denote the estimates of β and γ from the GEE
procedure

⋄ Σ can be estimated using a sandwich covariance estimator
implemented in standard software (however these are expected to be
slightly conservative!)

⋄ The bivariate normality makes everything nice in terms of hypothesis
testing
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Hypothesis tests I

⋄ Local tests

1. H0 : β = 0 versus Ha : β ̸= 0. Reject H0 if P(|U| > |β̃|) ≤ α, where

β̃ = β̂√
var(β̂)

and U ∼ N (0, 1)

2. H0 : γ = 0 versus Ha : γ ̸= 0. Reject H0 if P(|U| > |γ̃|) ≤ α, where
γ̃ = γ̂√

var(γ̂)
and U ∼ N (0, 1)

⋄ Global test

1. H0 : β = γ = 0 versus Ha : β ̸= 0 or γ ̸= 0. Let

Tglobal =
(
β̂ γ̂

)
Σ̂−1

(
β̂
γ̂

)
H0 is rejected if P(Y > Tglobal) ≤ α, where Y is χ2-distributed with
2 degrees of freedom
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Hypothesis tests II

⋄ Sequential test

1. Order the values of β̃ and γ̃ according to absolute size. Assume that
|β̃| < |γ̃| without loss of generality

2. Let Hl : η = 0 be the ordered hypotheses for η = {β, γ} with
l = {1, 2} representing the order

3. H1 is rejected if P(|max(W1,W2)| > |β̃|) ≤ α where (W1,W2) is a
bivariate standard normal variable with unit variance and correlation
given by the correlation between β̃ and γ̃

4. If H1 is rejected, H2 is tested. H2 is rejected if P(|W2| > |γ̃|) ≤ α

This procedure maintains type I error control
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The cautionary tale revisited

⋄ If we fit the bivariate pseudo-observation model to the simulated
data at time points t = (2, 3, 4), we obtain the following estimates

ξ̂ =

(
β̂
γ̂

)
=

(
0.0426
−1.7848

)
, Σ̂ =

(
0.0041 −0.0014
−0.0014 0.0258

)
⋄ Local tests

1. β̃ = β̂
σ̂11

= 0.0426
0.0645

= 0.6619 (p-value of 0.51)

2. γ̃ = γ̂
σ̂22

= −1.7848
0.1607

= −11.1076 (p-value < 0.0001)

⋄ Global test

Tglobal =
(
β̂ γ̂

)
Σ̂−1

(
β̂
γ̂

)
= 124.1278 (pvalue < 0.0001)

⋄ Sequential test

1. Start with γ̃ = −11.1076
2. We reject H1 since P(|max(W1,W2)| > |γ̃|) < 0.0001
3. We cannot reject H2 since P(|W2| > |β̃|) = 0.5080
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The cautionary tale revisited

⋄ By using the bivariate pseudo-observation model we can disentangle
the effects of treatment on recurrent events and death

⋄ We do not make a type I error like we do if blindly fit a LWYY
model to the data

⋄ Moreover, we gain knowledge on how these effects are correlated.
The correlation matrix, Ω̂, corresponding to Σ̂ is given by

Ω̂ =

(
1 −0.1367

−0.1367 1

)
This matches the pattern we see, the negative effect on death for
Z = 0 is carried over to the effect on recurrent events (although
β = 0) through ρ
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Summary

⋄ The bivariate pseudo-observation model is a powerful tool for
understanding treatment effects (or other covariate effects) on
recurrent events and death simultaneously

⋄ Various link functions may be chosen in the linear model
(corresponding to different estimands)

⋄ This approach actually analyses the two-dimensional (or
multi-dimensional) nature of data instead of trying to squeeze it into
an one-dimensional issue

⋄ recurrentpseudo R-package on the way...

⋄ Think twice before you close your eyes to mortality when conducting
a recurrent event analysis!
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