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Motivation: Phase 3 clinical trials

Phase III trials are conducted as the last stage in the drug
development process.

Two positive studies are usually required to confirm that a new
treatment is superior to the current standard treatment.

Regulators customarily require a hypothesis test to reach
significance at the one-sided 2.5% level.

Studies may recruit hundreds, or even thousands, of subjects at a
cost of as much as e 10k to e 50k per patient.

The time taken to reach a conclusion eats into the limited patent
lifetime remaining to the company developing the drug.

Thus, there are strong incentives to reach an early conclusion for
either a positive or negative decision.
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Motivation: Interim monitoring

Clinical trials methodology can also be applied to animal trials and
epidemiological studies, where there is similar motivation from

Ethics

Administration (accrual, compliance, . . . )

Economics

to monitor the conduct of the trial and examine accumulating data.

Subjects should not be exposed to unsafe, ineffective or inferior
treatments.

National and international guidelines for clinical trials call for
interim analyses to be performed — and reported.

It is now standard practice for clinical trials to have a Data and
Safety Monitoring Board (DSMB) to oversee the study and
consider the option of early termination.
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Motivation: Repeated hypothesis tests during a study

Suppose θ represents the difference in mean responses in a
two-treatment comparison.

In a superiority trial, we wish to test H0: θ ≤ 0 against θ > 0.

If a test of H0 is carried out at one-sided significance level
α = 0.025 on K occasions during the course of the trial, the
overall type I error rate is:

Number of Overall Number of Overall
tests, K error rate tests, K error rate

1 0.025 10 0.097

2 0.042 20 0.124

3 0.054 100 0.190

5 0.071 ∞ 1.000

See Armitage et al. (JRSS, A, 1969).
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Motivation: Adaptive clinical trial designs

Around the year 2000, there was a surge of interest in “adaptive”
trials which allow changes in study design based on interim results.

An adaptive trial could:

Route more patients to the treatment that seems to work best

Drop treatments that don’t seem to be effective

Add more of the type of patients who react best to a
particular treatment

Merge two different phases of drug development into one trial

This represented a dramatic change from the philosophy of simple
Phase III trials, designed to answer fully formulated questions
through a pre-defined protocol and statistical analysis plan.

Time has shown what such designs can (and cannot) achieve.
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Outline of course

1. Group sequential tests (1)

Error spending tests

Examples of group sequential designs:

With a normal response,

With a binary response,

With a survival endpoint

2. Group sequential tests (2)

Group sequential tests with a delayed response

“Over-run” data after a group sequential test

Inference on termination of a group sequential trial
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Outline of course

3. Multiple testing procedures

Introduction to multiple testing

Graphical representation of multiple testing procedures

Combining multiple testing and group sequential tests

Testing a secondary endpoint after a group sequential test

4. Adaptive clinical trial designs (1)

Combination tests

Sample size re-estimation

Testing multiple hypotheses

Closed Testing Procedures
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Outline of course

5. Adaptive clinical trial designs (2)

Enrichment designs

Seamless Phase 2/3 designs

6. Multi-armed group sequential trials

Multi-armed multi-stage (MAMS) designs

A survival trial with treatment selection

Avoiding type I error inflation

Assessing the benefits of an adaptive design
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Part 1. Group sequential tests (1)

1.1. Introduction

1.2. Sequential distribution theory

1.3. Computations for group sequential tests

1.4. Benefits of group sequential testing

1.5. Error spending tests

1.6. Examples of group sequential designs:

With a normal response,

With a binary response,

With a survival endpoint
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1.1 Group sequential tests: Introduction

Suppose a new treatment (Treatment A) is to be compared to a
placebo or positive control (Treatment B) in a Phase III trial.

The treatment effect θ for the primary endpoint represents the
advantage of Treatment A over Treatment B.

If θ > 0, Treatment A is more effective.

We wish to test the null hypothesis H0: θ ≤ 0 against θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Reject H0} = 1− β.

In a group sequential trial, data are examined on a number of
occasions to see if an early decision may be possible.
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Group sequential tests

A typical boundary for a one-sided test, expressed in terms of
standardised test statistics Z1, . . . , ZK , has the form:

-
k

6
Zk

•
•

• • •

•

•

•

•

PP
XX

`̀ hh

��

��

""

��
!!

Reject H0

Accept H0

Crossing the upper boundary leads to early stopping for a positive
outcome, rejecting H0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with
acceptance of H0.
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Benefits of group sequential testing

Earlier decisions

Group sequential testing can speed up the process to
introduce an effective new treatment.

Fewer patients recruited

Expected sample sizes for group sequential designs are,
typically, around 60 to 70% of the fixed sample size for
a trial with the same type I error rate and power.

Stopping failing trials early

Early stopping “for futility” can release resources to
continue the development of other promising treatments.
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1.2 Joint distribution of parameter estimates

Reference: Ch. 11 of Group Sequential Methods with Applications
to Clinical Trials, Jennison & Turnbull, 2000 (hereafter, JT).

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate
normal,

θ̂k ∼ N(θ, I−1
k ), k = 1, . . . ,K,

and

Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) = I−1
k2

for k1 < k2.
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Sequential distribution theory

The joint distribution of θ̂1, . . . , θ̂K can be derived directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The canonical distribution also applies when θ is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood (large sample
theory).

Thus, theory supports general comparisons, including:

crossover studies,

analysis of longitudinal data,

comparisons adjusted for covariates.
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Canonical joint distribution of θ̂1, . . . , θ̂K

A single normal mean

Suppose X1, X2, . . . are independent N(θ, σ2) responses.

For n1 < n2, define

θ̂1 =
X1 + . . .+Xn1

n1
, θ̂2 =

X1 + . . .+Xn1 + . . .+Xn2

n2
.

The joint distribution of θ̂1 and θ̂2 is bivariate normal.

Marginally

θ̂1 ∼ N(θ, I1
−1) and θ̂2 ∼ N(θ, I2

−1),

where

I1 =
n1

σ2
and I2 =

n2

σ2
.
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Canonical joint distribution of θ̂1, . . . , θ̂K

It remains to check the covariance:

Cov(θ̂1, θ̂2) = Cov

(
X1 + . . .+Xn1

n1
,
X1 + . . .+Xn1 + . . .+Xn2

n2

)

= Cov

(
X1 + . . .+Xn1

n1
,
X1 + . . .+Xn1

n2

)

=
1

n1 n2
Var(X1 + . . .+Xn1)

=
σ2

n2
= I−1

2

= Var(θ̂2).
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Canonical joint distribution of θ̂1, . . . , θ̂K

A two-treatment comparison

Suppose observations on Treatments A and B, respectively, are

XAi ∼ N(µA, σ
2) and XBi ∼ N(µB, σ

2),

and θ = µA − µB.

At analysis k, with nAk observations on Treatment A and nBk on
Treatment B,

θ̂k = µ̂A,k − µ̂B,k =
1

nAk

nAk∑
i=1

XAi −
1

nBk

nBk∑
i=1

XBi.

Exercise: Show that θ̂1, . . . , θ̂K have the canonical joint
distribution, i.e., they are multivariate normal,

θ̂k ∼ N(θ, Ik−1), where Ik = {σ2/nAk + σ2/nBk}−1

and Cov(θ̂k1 , θ̂k2) = Var(θ̂k2) for k1 < k2.
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Canonical joint distribution of θ̂1, . . . , θ̂K

All efficient estimators have the canonical covariance

That is, if θ̂1 at analysis 1 and θ̂2 at analysis 2 are efficient,
unbiased estimators of θ, then

Cov(θ̂1, θ̂2) = Var(θ̂2).

Proof:

Suppose Cov(θ̂1, θ̂2) 6= Var(θ̂2), so Cov(θ̂1 − θ̂2, θ̂2) 6= 0.

Consider an unbiased estimator of the form θ̂
∗

2 = θ̂2 + ε (θ̂1− θ̂2).

For ε small and of the opposite sign to Cov(θ̂1 − θ̂2, θ̂2),

Var(θ̂
∗

2 ) < Var(θ̂2),

contradicting the assumption that θ̂2 is an efficient estimator of θ.
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Canonical joint distribution of Z-statistics

In testing H0: θ = 0, the standardised statistic at analysis k is

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√
Ik.

For these statistics,

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√
Ik, 1), k = 1, . . . ,K,

Cov(Zk1 , Zk2) =
√
Ik1/Ik2 for k1 < k2.
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Canonical joint distribution of score statistics

The score statistics, Sk = Zk
√
Ik, are also multivariate normal

with

Sk ∼ N(θ Ik, Ik), k = 1, . . . ,K.

The score statistics possess the “independent increments”
property,

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k 6= k′.

It can be helpful to know that the score statistics behave as
Brownian motion with drift θ observed at times I1, . . . , IK .
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Survival data

The canonical joint distributions also arise for

a) estimates of a parameter in Cox’s proportional hazards
regression model,

b) log-rank statistics for comparing two survival curves.

For survival data, observed information is roughly proportional to
the number of failures.

The “error spending” approach can be used to define group
sequential tests that can handle unpredictable and unevenly spaced
information levels.

Reference: “Group-sequential analysis incorporating covariate
information”, Jennison & Turnbull (JASA, 1997).
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1.3 Computations for group sequential tests (GSTs)
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In order to find Pθ{Reject H0}, etc., we need to calculate the
probabilities of basic events such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.
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Computations for group sequential tests
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Probabilities such as Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3}
can be computed by repeated numerical integration (JT, Ch. 19).

Combining these probabilities yields type I error rate, power,
expected sample size, etc., of a group sequential design.

Constants and group sizes can be chosen to define a test with a
specific type I error probability and power.
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One-sided tests: The Pampallona & Tsiatis family

To test H0: θ ≤ 0 against the one-sided alternative θ > 0 with
type I error probability α and power 1− β at θ = δ.
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Ik

6
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•

Reject H0

Accept H0

For the P & T test with parameter ∆, boundaries on the score
statistic scale are

ak = Ik δ − C2 I ∆
k , bk = C1 I ∆

k .

The computational methods described above can be used to find
C1, C2 and IK such that the test has the specified error rates.

Reference: Pampallona & Tsiatis (JSPI, 1994).
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One-sided tests with a non-binding futility boundary

Regulators are not always convinced a trial monitoring committee
will abide by the stopping boundary specified in the protocol.

- Ik
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Reject H0

Accept H0

∗ ∗

∗

∗

The sample path shown above leads to rejection of H0. Since such
paths are not included in type I error calculations, the true type I
error rate is under-estimated.

If a futility boundary is deemed to be non-binding, the type I error
rate should be computed ignoring the futility boundary.

However, investigators will wish to know power and expected
sample size when the futility boundary is obeyed.
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1.4 Benefits of group sequential testing

In order to test H0: θ ≤ 0 against θ > 0 with type I error
probability α and power 1− β at θ = δ, a fixed sample size study
needs information

Ifix =
{Φ−1(1− α) + Φ−1(1− β)}2

δ2
,

where Φ is the standard normal CDF.

Information is (roughly) proportional to sample size in many
clinical trial settings.

A GST with K analyses will need to be able to continue to a
maximum information level IK , greater than Ifix.

On average, the GST can stop earlier than this and expected
information on termination, Eθ(I), will be considerably less than
Ifix, especially under extreme values of θ.

We call R=IK/Ifix the inflation factor of a group sequential test.
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Optimal group sequential tests

We can seek a GST that minimises expected information Eθ(I)
under certain values of the treatment effect, θ, with a given
number of analyses K and inflation factor R.

Eales & Jennison (Biometrika, 1992) and Barber & Jennison
(Biometrika, 2002) optimise designs for criteria of the form∑

i

wi Eθi(I) or

∫
f(θ)Eθ(I) dθ,

where f is a normal density.

These optimised designs could be used in their own right.

They also serve as benchmarks for other methods which may have
additional useful features (e.g., error spending tests).
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Computing optimal group sequential tests

In optimising a GST, we create a Bayes sequential decision
problem, placing a prior on θ and defining costs for sampling and
for making incorrect decisions.

Such a problem can be solved rapidly by dynamic programming.

We then search for the combination of prior and costs such that
the solution to the (unconstrained) Bayes decision problem has the
specified frequentist error rates α at θ = 0 and β at θ = δ.

The resulting design solves both the Bayes decision problem and
the original frequentist problem.

NB: Although the Bayes decision problem is introduced as a
computational device, this derivation demonstrates that an efficient
frequentist design should also be a good Bayesian procedure.
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Benefits of group sequential testing

One-sided GSTs with binding futility boundaries, minimising

{E0(I) + Eδ(I)}/2 for K equally sized groups, α = 0.025,

1− β = 0.9 and Imax = R Ifix.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix
R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Note: E(I)↘ as K ↗ but with diminishing returns,

E(I)↘ as R↗ up to a point.
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1.5 Error spending tests (JT Ch. 7)

When the sequence I1, I2, . . . is unpredictable, a group
sequential design must adapt to observed information levels.

Lan & DeMets (Biometrika, 1983) introduced “error spending”
tests of H0: θ = 0 against θ 6= 0.

Maximum information design with spending function f(I/Imax)

-

IImax

6
f(I/Imax)

α

  !!
""
##
""
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The boundary at analysis k is set to give cumulative type I error
probability f(Ik/Imax).

If Imax is reached without rejecting H0, then H0, is accepted.
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One-sided error spending tests

For a one-sided test of H0: θ ≤ 0 against θ > 0 with

Type I error probability α at θ = 0,

Type II error probability β at θ = δ,

we need two error spending functions.

-
IImax

6

f(I/Imax)

α
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β
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Type I error probability α is spent according to the function
f(I/Imax), and type II error probability β according to g(I/Imax).
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One-sided error-spending tests

Analysis 1:

Observed information I1.

Reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1/Imax).

Accept H0 if Z1 < a1, where

Pθ=δ{Z1 < a1} = g(I1/Imax).

-
I1 I

6
Zk

•b1

•
a1
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One-sided error-spending tests

Analysis 2: Observed information I2

Reject H0 if Z2 > b2, where

Pθ=0{a1 < Z1 < b1, Z2 > b2} = f(I2/Imax)− f(I1/Imax)

— note that, for now, we assume the futility boundary is binding.

Accept H0 if Z2 < a2, where

Pθ=δ{a1 < Z1 < b1, Z2 < a2} = g(I2/Imax)− g(I1/Imax).

-
I1 I2 I

6
Zk

•b1 •b2

•
a1

•
a2
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One-sided error-spending tests

Analysis k: Observed information Ik

Find ak and bk to satisfy

Pθ=0{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk > bk}

= f(Ik/Imax)− f(Ik−1/Imax),

and

Pθ=δ{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk < ak}

= g(Ik/Imax)− g(Ik−1/Imax).

-
Ik I

6
Zk

• • • • bk

•
•

•
• ak
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Remarks on error spending tests

1. Computation of (ak, bk) does not depend on future
information levels, Ik+1, Ik+2, . . . .

2. A “maximum information design” continues until a
boundary is crossed or an analysis with Ik ≥ Imax is reached.

If necessary, patient accrual can be extended to reach Imax.

-×
I1

×
I2

×
I3

×
I4

×
I5

×
I6

Imax

Information

3. If a maximum of K analyses is specified, the study
terminates at analysis K with f(IK/Imax) defined to be α.

Then, bK is chosen to give cumulative type I error probability
α and we set aK = bK .
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Remarks on error spending tests

4. The value of Imax can be chosen so that boundaries
converge at the final analysis when, say,

Ik = (k/K) Imax, k = 1, . . . ,K.

5. In a one-sided test with ρ-family error spending function,
type I error probability is spent as

f(I/Imax) = α min {1, (I/Imax)ρ}

and type II error probability as

g(I/Imax) = β min {1, (I/Imax)ρ}.

The value of ρ determines the inflation factor R = Imax/Ifix.

Barber & Jennison (Biometrika, 2002) show the ρ-family
provides tests with excellent efficiency for a given number of
analyses K and inflation factor R.
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Error spending tests: Over-running

The final analysis of a one-sided error spending test needs care.

If IK > Imax, solving for aK and bK is likely to give aK > bK .
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The value calculated for bK guarantees type I error probability
equal to α. So, reduce aK to bK — and gain extra power.

Even if IK = Imax, one may find aK > bK if information levels
deviate from the equally spaced values (say) used in setting Imax.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Error spending tests: Under-running

A final value IK < Imax may arise when the last planned analysis
is reached, e.g., at a maximum follow-up time in a survival study.

Then, solving for aK and bK is likely to give aK < bK .
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Again, the value calculated for bK gives type I error probability α.

So increase aK to bK — and attained power will be below 1− β.

Chris Jennison Group Sequential and Adaptive Clinical Trials



One-sided error-spending tests: Non-binding futility

If the futility boundary is treated as non-binding, computation of
the efficacy boundary only involves the type I error spending
function f(I/Imax).

Boundary values, b1, b2, . . . , are calculated as the trial proceeds.

Analysis k: Observed information Ik

Reject H0 if Zk > bk, where

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk}

= f(Ik/Imax)− f(Ik−1/Imax).

-
Ik I

6
Zk

•b1 • • • bk
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One-sided error-spending tests: Non-binding futility

A futility boundary can be added through a type II error spending
function g(I/Imax).

For k = 1, . . . ,K − 1:

At analysis k with observed information Ik, set ak to satisfy

Pθ=δ{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk < ak}

= g(Ik/Imax)− g(Ik−1/Imax).

For k = K: Set aK = bK .

-
IK I

6
Zk

•b1 • • • •bK

•a1

•

•
•

= aK
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1.6 (a) An error spending test with normal response

Consider a two-treatment comparison with responses

XAi ∼ N(µA, σ
2) on Treatment A,

XBi ∼ N(µB, σ
2) on Treatment B.

Setting θ = µA−µB, we wish to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025,

Power 1− β = 0.9 at θ = δ = 0.4.

We shall apply a ρ-family error spending design with ρ = 2,

spending type I error probability as

f(I/Imax) = α min {1, (I/Imax)2}

and type II error probability as

g(I/Imax) = β min {1, (I/Imax)2}.
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A one-sided test with a non-binding futility boundary

Information

Suppose it is known that σ2 = 0.64. (This is, of course, an
unusual assumption — we consider the case of unknown σ2 at the
end of this Section.)

With total numbers of observations nA on Treatment A and nB on
Treatment B, the estimated treatment effect has variance

Var(θ̂) =

(
1

nA
+

1

nB

)
σ2 =

(
1

nA
+

1

nB

)
0.64

and the Fisher information for θ is

I = {Var(θ̂)}−1.

It is this information that appears in the error spending functions.
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Applying a ρ-family error spending test

A fixed sample trial with power 0.9 at θ = 0.4 needs information

Ifix =
{Φ−1(0.975) + Φ−1(0.9)})2

0.42
= 65.7.

The ρ-family error spending test with ρ = 2, with 5 equally spaced
analyses, and a non-binding futility boundary has an inflation
factor R = 1.133.

Thus, this design needs Imax = 1.133× 65.7 = 74.39 to satisfy
type I error and power requirements.

Information level Imax = 74.39 will be achieved by sample sizes

nA = nB = 95.

Thus, recruitment should be organised to reach this target at the
5th analysis.
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Applying a ρ-family error spending test

Suppose we observe θ̂1 = 0.10 at analysis 1 based on
nA = nB = 20 observations per treatment. Thus,

Var(θ̂1) =

(
1

20
+

1

20

)
0.64 = 0.064

and the Fisher information for θ at this analysis is

I1 = 0.064−1 = 15.6.

Since Imax = 74.39, the type I and II error probabilities to be
spent are

f(I1/Imax) = 0.025 (15.6/74.39)2 = 0.00110,

g(I1/Imax) = 0.1 (15.6/74.39)2 = 0.00440.

It follows that boundary values are a1 = −1.038 and b1 = 3.061 on
the Z-scale.
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Applying a ρ-family error spending test

Applying the stopping boundary at the first analysis

The standard error of θ̂1 is 0.0641/2 = 0.253.

Hence

Z1 =
θ̂1

s.e. (θ̂1)
=

0.10

0.253
= 0.395.

The boundary values are a1 = −1.038 and b1 = 3.061.

Since a1 < Z1 < b1, the trial continues to the next analysis.

Applying the stopping boundary at subsequent analyses

Successive analyses proceed along the same lines until a boundary
is crossed or the final analysis is reached.
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Applying a ρ-family error spending test

After further analyses, suppose the cumulative sample sizes and
information levels Ik are as recorded below.

Analysis Cumulative sample size Ik Boundary

k nA + nB ak bk

1 40 15.6 −1.038 3.061

2 80 31.2 0.072 2.681

3 120 46.9 0.887 2.436

4 164 64.1 1.653 2.213

5 190 74.2 2.135 2.135

The test with a non-binding futility boundary, has critical values
ak and bk as shown.

If the futility boundary is actually obeyed, the attained type I error
rate is 0.023 and power 0.898 is achieved when θ = 0.4.
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Applying a ρ-family error spending test

If the observed treatment effect estimates are θ̂1 = 0.10, θ̂2 = 0.06,

θ̂3 = 0.21, and θ̂4 = 0.31, then the trial stops to reject H0 at

analysis 4.

Analysis Ik Boundary θ̂k s.e. (θ̂k) Zk
k ak bk

1 15.6 −1.038 3.061 0.10 0.253 0.395

2 31.2 0.072 2.681 0.06 0.179 0.335

3 46.9 0.887 2.436 0.21 0.146 1.438

4 64.1 1.653 2.213 0.31 0.125 2.481

5 — — — — — —

In this case, I5 and θ̂5 are not observed.
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An error spending test with a binding futility boundary

Suppose the same trial is conducted with a binding futility
boundary — using the same f and g, and with Imax = 74.39.

Then, we have:

Analysis Cumulative sample size Ik Boundary

k nA + nB ak bk

1 40 15.6 −1.038 3.061

2 80 31.2 0.072 2.681

3 120 46.9 0.887 2.436

4 164 64.1 1.653 2.203

5 190 74.2 2.044 2.044

The upper boundary is now lower at analyses 4 and 5.

With a binding futility boundary, the lower efficacy boundary gives
higher power: when θ = 0.4, the power is 0.905.
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GSTs for normal data with unknown variance

We can modify the preceding methods to deal with unknown σ2.

Plans are made assuming an initial estimate of σ2, but updated as
new estimates of σ2 become available.

In order to test H0: θ ≤ 0 vs θ > 0 with type I error rate α and
power 1− β at θ = δ, a fixed sample test requires

Ifix =
{Φ−1(1− α) + Φ−1(1− α)}2

δ2

and for an error spending design with inflation factor R, the target
information level is Imax = R Ifix.

Thus we modify sample size during the study, aiming to achieve{(
1

nA
+

1

nB

)
σ̂2

}−1

= R Ifix

at the final analysis.
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GSTs for normal data with unknown variance

In an error spending test, information is spent as a function of the
estimated information at each analysis, based on the current σ̂2.

A boundary {ak, bk} for test statistics {Zk} is calculated following
the error spending approach, as in the case of known σ2.

This is then converted to a boundary for t-statistics {Tk} by
preserving the significance level of each boundary point.

At analysis k, define

p1k = 1− Φ(ak) and p2k = 1− Φ(bk).

If Tk has νk degrees of freedom, let ãk and b̃k be such that

P (Tνk > b̃k) = p2k and P (Tνk > ãk) = p1k.

The test stops to reject H0 if Tk > b̃k and to accept H0 if Tk < ãk.
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East and RPACT: Demonstration, Normal data

We wish to plan a two treatment comparison, testing for
superiority, i.e., testing

H0: θ ≤ 0 vs θ > 0,

where θ = µA − µB.

We shall consider how to:

• Design a one-sided, error spending test with

Type I error probability, α = 0.025,

Power 1− β = 0.9 at θ = 0.4 when σ2 = 0.64,

• Apply the test,

• Include a binding or non-binding futility boundary.
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1.6 (b) An error spending test with binary data

Treatment for heart failure

A new treatment is to be compared to the current standard.

The primary endpoint

is re-admission to hospital (or death) within 30 days.

The current treatment

has a re-admission rate of 25%.

Testing for superiority

It is hoped the new treatment will reduce re-admissions to 20%.

Denote re-admission probabilities by pt and pc on the new
treatment and control.

To establish superiority of the new treatment, we carry out a test
of H0: pt ≥ pc against pt < pc — hoping to reject H0.
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Binary example: The testing problem

Setting θ = pc − pt, we wish to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025 at θ = 0,

Power 1− β = 0.9 when θ = δ = 0.05.

Let

nt, yt = Numbers of subjects, re-admissions on the treatment arm,

nc, yc = Numbers of subjects, re-admissions on the control arm,

p̂c = yc/nc, p̂t = yt/nt.

For large nt and nc we have, approximately,

θ̂ = p̂c − p̂t ∼ N

(
θ,
pc(1− pc)

nc
+
pt(1− pt)

nt

)
.
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Binary example: A fixed sample test

A fixed sample test requires information

Ifix = {Φ−1(1− α) + Φ−1(1− β)}2 / δ2

= ({Φ−1(0.975) + Φ−1(0.9)}2 / 0.052

= 4203.2.

With equal allocation to the two treatments and nt = nc = n,

I = (Var(θ̂))−1 =

(
pc(1− pc)

n
+
pt(1− pt)

n

)−1

.

Calculating power under the alternative pc = 0.25 and pt = 0.2, we
find a fixed sample size test requires

n = 1461

subjects per treatment arm.

NB This sample size depends on pc and pt, not just θ = pc − pt.
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Binary example: A group sequential design

Suppose investigators choose:

A ρ-family, one-sided error spending test with ρ = 3 (in f and g),

Type I error rate α = 0.025, power 0.9 when θ = 0.05,

A total of 5 analyses, and a binding futility boundary.

This test has inflation factor R = 1.049, so the maximum

information level is

Imax = 1.049× 4203.2 = 4409.2.

Since I = n {pc(1− pc) + pt(1− pt)}−1, this will require up to

1533 subjects per treatment when pc = 0.25 and pt = 0.2.

Using an error spending test in a maximum information design
allows re-assessment of the sample size needed to reach Imax.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Binary example: Applying the error spending test

At analysis k: Using current estimates p̂c and p̂t, calculate

Îk = { p̂c(1− p̂c)/nc + p̂t(1− p̂t)/nt }−1

and

Zk =
p̂c − p̂t√

{ p̂c(1− p̂c)/nc + p̂t(1− p̂t)/nt }
= θ̂k

√
Îk.

Compute boundary values ak and bk using error spending functions

f(I/Imax) = 0.025 min {1, (I/Imax)3},

g(I/Imax) = 0.1 min {1, (I/Imax)3}.

Apply the stopping rule

If Zk < ak: stop, accept H0,

If Zk > bk: stop, reject H0.
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Binary example: Information monitoring

The re-admission rates used in sample size calculations, pc = 0.25
and pt = 0.2, may not hold in practice.

These rates can be re-estimated from observed data.

Information is related to sample size per treatment by

I = n {pc(1− pc) + pt(1− pt)}−1 = nγ−1, say.

At an interim analysis, estimate γ = pc(1− pc) + pt(1− pt) by

γ̂ = p̂c (1− p̂c) + p̂t (1− p̂t).

Then, use this value to compute the target sample size per
treatment group,

n̂max = γ̂ Imax

and modify remaining group sizes to reach this target at the final
planned analysis.
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Binary example: Illustrative data

Analysis 1

Control treatment Experimental treatment

nc = 310, yc = 73 nt = 306, yt = 70

p̂c = 0.236 (s.e. 0.024) p̂t = 0.229 (s.e. 0.024)

θ̂1 = 0.007 (s.e. 0.034)

Z1 = 0.20, I1 = 864 a1 = −1.70, b1 = 3.56

Analysis 2

Control treatment Experimental treatment

nc = 612, yc = 151 nt = 602, yt = 141

p̂c = 0.247 (s.e. 0.017) p̂t = 0.234 (s.e. 0.017)

θ̂2 = 0.013 (s.e. 0.024)

Z2 = 0.51, I2 = 1662 a2 = −0.54, b2 = 3.03
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Binary example: Illustrative data

Analysis 3

Control treatment Experimental treatment

nc = 915, yc = 238 nt = 925, yt = 202

p̂c = 0.260 (s.e. 0.014) p̂t = 0.218 (s.e. 0.014)

θ̂3 = 0.042 (s.e. 0.020)

Z3 = 2.10, I3 = 2532 a3 = 0.39, b3 = 2.65

Analysis 4

Control treatment Experimental treatment

nc = 1225, yc = 324 nt = 1222, yt = 268

p̂c = 0.264 (s.e. 0.013) p̂t = 0.219 (s.e. 0.012)

θ̂4 = 0.045 (s.e. 0.017)

Z4 = 2.61, I4 = 3345 a4 = 1.12, b4 = 2.37

— Stop, reject H0 —
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Binary example: Illustrative data

Summary of the application of a one-sided error spending test:

Analysis Ik Boundary θ̂k s.e. (θ̂k) Zk
k ak bk

1 864 −1.70 3.56 0.007 0.034 0.20

2 1662 −0.54 3.03 0.013 0.024 0.51

3 2532 0.39 2.65 0.042 0.020 2.10

4 3345 1.12 2.37 0.045 0.017 2.61

The upper boundary is crossed at analysis 4 out of 5 and the null
hypothesis H0: θ ≤ 0 is rejected.

Had the trial continued past analysis 4, putting p̂c = 0.264 and
p̂t = 0.219 in the formula for Var(θ̂) would have led to a target of
1611 patients per treatment arm to achieve I5 = 4409.2.
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East: Demonstration, Binary data

We wish to plan a two treatment comparison, testing for
superiority, i.e., testing

H0: θ ≤ 0 vs θ > 0,

where θ = pc − pt.

We shall consider how to:

• Design a one-sided, error spending test with

Type I error probability, α = 0.025,

Power 1− β = 0.9 at θ = 0.05,

• Apply the test with “information monitoring”

• Include a binding or non-binding futility boundary.
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1.6 (c) An error spending test with survival data

Example: Oropharynx Clinical Trial Data

Survival of patients on experimental Treatment A and standard
Treatment B.

Analysis Number entered Number of deaths
k Date Trt A Trt B Trt A Trt B

1 12/69 38 45 13 14

2 12/70 56 70 30 28

3 12/71 81 93 44 47

4 12/72 95 100 63 66

5 12/73 95 100 69 73

From Kalbfleisch & Prentice (2002) The Statistical Analysis of
Failure Time Data, 2nd edition, Appendix A, Data Set II.

See also JT, Ch. 13.
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Accrual and follow up in a survival study

-
Start of
study

End of
accrual

End of
follow up

Calendar
time

•
•

◦
•

•
◦

•
•

•
◦

•
◦

Key

• death time observed

◦ censored observation

Subjects are randomised to a treatment as they enter the study.

Survival is measured from entry to the study.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Interim analyses

-
Analysis

1
Analysis

2
Analysis

3
Calendar

time

•
•

◦
•

•
◦

•
•

•
◦

•
◦

At an interim analysis, subjects are censored if they are still alive.

Information on such patients continues to accrue at later analyses.
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Interim analysis 1

-
Survival

time

•
◦

◦
◦

•
◦
◦

We analyse data on survival from time of randomisation.

Survival times start at zero and “analysis time” censoring occurs
for subjects surviving past this first analysis.
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Interim analysis 2

-
Survival time

•
•
◦

◦
•

◦
◦
◦

•
◦
◦
◦

At interim analysis 2, there is further follow-up of subjects who
were censored at analysis 1.

In addition, there is initial information on the survival times of
subjects entering the trial since analysis 1.
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The logrank statistic

At stage k, the observed number of deaths is dk.

Elapsed times between entry to the study and these deaths are

τ1,k < τ2,k < . . . < τdk,k (assuming no ties).

Define variables at analysis k

riA,k and riB,k Numbers at risk on Trts A and B at τi,k−

rik = riA,k + riB,k Total number at risk at τi,k−

Ok Observed number of deaths on Trt B

Ek =
∑dk

i=1 riB,k/rik “Expected” number of deaths on Trt B

Vk =
∑dk

1 riA,kriB,k/r
2
ik “Variance” of Ok

Zk = (Ok − Ek)/
√
Vk Standardised logrank statistic
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Canonical joint distribution of logrank-statistics

In the Proportional Hazards Model: We assume hazard rates
hA on Treatment A and hB on Treatment B are related by

hB(t) = λhA(t).

The log hazard ratio is θ = ln(λ).

Then, with Ik = Vk, we have approximately

Zk ∼ N(θ
√
Ik, 1), k = 1, . . . ,K,

Cov(Zk1 , Zk2) =
√

(Ik1/Ik2) for k1 < k2.

In addition, (Z1, . . . , ZK) is approximately multivariate normal —
so the statistics Z1, . . . , ZK follow the canonical joint distribution.

The kth score statistic is Sk = Zk
√
Ik, with variance Vk = Ik,

and the sequence {S1, . . . , SK} has uncorrelated increments.
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Canonical joint distribution of estimates of the hazard ratio

Observed information: Recall that

Ik = Vk =

dk∑
i=1

riA,k riB,k
(riA,k + riB,k)2

.

If equal numbers are randomised to Treatments A and B and
λ ≈ 1, we can expect riA,k ≈ riB,k for each k, and so

Ik = Vk ≈ dk/4.

Estimating θ:

Since Zk ∼ N(θ
√
Ik, 1), we can estimate θ at analysis k by

θ̂k =
Zk√
Ik
.

It follows that

θ̂k ∼ N(θ, I−1
k ) approximately.
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Design of the Oropharynx trial

Suppose we wish to create a one-sided test of H0: θ ≤ 0 vs θ > 0.

Note θ > 0 ⇒ λ > 1, i.e., Treatment A is better.

We require:

Type I error probability α = 0.025,

Power 1− β = 0.8 at θ = 0.5, i.e., at λ = 1.65.

Information needed for a fixed sample study is

Ifix =
{Φ−1(1− α) + Φ−1(1− β)}2

0.52
= 31.40.

Under the approximation I ≈ d/4, the total number of failures to
be observed is

df = 4 Ifix ≈ 126.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Design of the Oropharynx trial

For a one-sided test with up to 5 analyses, we could try to use a
standard design created for equally spaced information levels.

-
k

6
Zk

•
•

• • •

•

•

•

•

XX
`̀ hh

��

""

��
!!

Reject H0

Accept H0

However, increments in information between analyses are
unpredictable.

So, an error spending design is a natural choice.
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A one-sided, error spending design

Specification:

One-sided test of H0: θ ≤ 0 vs θ > 0,

Type I error probability α = 0.025,

Power 1− β = 0.8 at θ = ln(λ) = 0.5,

Binding futility boundary.

When designing, assume K = 5 equally spaced information levels.

Use a power-family test with ρ = 2 to spend error ∝ (I/Imax)2.

Information for a fixed sample test has to be inflated by R = 1.098.

So, we require Imax = 1.098× 31.40 = 34.48, which needs a total

of 4× 34.48 ≈ 138 observed deaths.
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A one-sided, error spending design

Suppose that, as assumed when planning the trial, information
levels are equally spaced up to I5 = Imax = 34.48.

Then, we would have the following boundary values
(a1, b1), . . . , (a5, b5) for the standardised logrank statistics
Z1, . . . , Z5.

k Ik ak bk

1 6.90 −1.10 3.09

2 13.79 −0.05 2.71

3 20.69 0.72 2.47

4 27.58 1.39 2.28

5 34.48 2.06 2.06
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A one-sided, error spending design

If information levels Ik = (k/5) 34.48, k = 1, . . . , 5, are observed,
the expected information on termination is the following function
of the log hazard ratio, θ.

−0.5 0.0 0.5 1.0

0
1

0
2

0
3

0
4

0

Log hazard ratio, θ

E
θ(I

n
f)

Fixed sample test

Error spending GST

Note that the GST has uniformly lower E(I) than the fixed sample
design’s Ifix = 31.40.
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Summary data and critical values for the Oropharynx trial

In reality, we construct error spending boundaries using the
observed information levels.

The design with a non-binding futility boundary has the following
boundary values (a1, b1), . . . , (a5, b5) for the standardised logrank
statistics Z1, . . . , Z5.

Analysis Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.41 3.23 −1.04

2 126 58 12.58 −0.21 2.76 −1.00

3 174 91 21.11 0.78 2.44 −1.21

4 195 129 30.55 1.68 2.16 −0.73

5 195 142 33.28 2.14 2.14 −0.87

The trial would have terminated at analysis 2 to accept H0.
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An error spending test with a non-binding futility boundary

If a non-binding futility boundary is used, the required maximum
information level is a little higher at 35.58.

Applying this design to the observed information levels gives:

Analysis Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.44 3.25 −1.04

2 126 58 12.58 −0.23 2.78 −1.00

3 174 91 21.11 0.75 2.46 −1.21

4 195 129 30.55 1.64 2.20 −0.73

5 195 142 33.28 2.09 2.09 −0.87

Again, the trial terminates at analysis 2 with acceptance of H0.
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Covariate adjustment in the Oropharynx trial

Covariate information was recorded for subjects: Institution (6),

Gender, Initial condition, T-staging, N-staging, Tumour site (3).

A proportional hazards regression model includes

Strata l = 1, . . . , 6 for the six participating institutions,

Treatment effect β1,

Coefficients β2, . . . , β5 for Gender and the continuous
variables Initial condition, T-staging and N-staging,

Coefficients β6 and β7 for the categorical variable Tumour site.

Modelling the hazard rate for patient i as

hil(t) = h0l(t) e
{β1I(Patient i on Trt B) + Σ7

j=2 xijβj},

the objective is to test H0: β1 ≤ 0 against β1 > 0.
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Covariate adjustment in the Oropharynx trial

Standard software for Cox regression can provide an estimate of
the parameter vector, β, and its estimated variance.

We are interested in the treatment effect β1.

At stage k we have

β̂
(k)
1

vk = V̂ar
(
β̂

(k)
1

)
Ik = v−1

k

Zk = β̂
(k)
1 /
√
vk.

Theory tells us: The standardised statistics Z1, . . . , Z5 have,
approximately, the canonical joint distribution.
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Covariate-adjusted analysis of the Oropharynx trial

Constructing the error spending test with a non-binding futility
boundary gives critical values (a1, b1), . . . , (a5, b5) for Z1, . . . , Z5.

k Ik ak bk β̂
(k)
1 Zk

1 4.11 −1.77 3.40 −0.79 −1.60

2 10.89 −0.47 2.87 −0.14 −0.45

3 19.23 0.55 2.52 −0.08 −0.33

4 28.10 1.41 2.27 0.04 0.20

5 30.96 2.27 2.27 0.01 0.04

Under this stopping rule, the study would have continued — just
— at analysis 2 and stopped to accept H0 at analysis 3.

Note that β1 is the log hazard ratio after covariate adjustment.
For β1 > 0, we should expect β1 > λ where λ is the log hazard
ratio in a model without covariates.
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East: Demonstration, Survival data

We wish to plan a two treatment comparison, testing for
superiority, i.e., testing

H0: θ ≤ 0 vs θ > 0,

where λ is the hazard ratio between treatments and θ = log(λ).

We shall consider how to:

• Design a one-sided, error spending test with

Type I error probability, α = 0.025,

Power 1− β = 0.8 at λ = 1.65,

• Using a sequential logrank test or a sequential test based on
parameter estimates in a Cox model,

• Include a binding or non-binding futility boundary.
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Recapitulation: Group sequential tests (1)

• It is natural to monitor clinical trials with a view to possible
early stopping.

• Distribution theory supports a general approach to design group
sequential tests for a variety of response types.

• Numerical integration allows us to compute properties of group
sequential designs precisely and set stopping boundaries and
decision rules that control the type I error rate.

• Group sequential designs can be optimised for a given objective.

• Error spending designs offer efficient, flexible monitoring of a
variety of response types, including survival data.
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Part 2. Group sequential tests (2)

2.1. Group sequential tests with a delayed response

Definition of Delayed Response GSTs

Optimising a Delayed Response GST

2.2. Error spending Delayed Response GSTs

Example 1: Normally distributed response

Example 2: A time-to-event endpoint

2.3. Analysis on termination of a group sequential design

P-values, confidence intervals and unbiased estimation

Estimation and testing for a secondary endpoint
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2.1 Group sequential testing for a delayed response

Reference: Hampson & Jennison (JRSS B, 2013), hereafter “HJ”

Group sequential designs are most often developed supposing
observations will be recorded immediately after treatment.

Thus, if it is decided to stop a trial at an interim analysis, it is
assumed the current observations will form the final set of data.

In practice, responses are observed some time after treatment.

Thus, when it is decided to stop a trial at an interim analysis, one
should expect additional data from patients who have been treated
but whose responses have not yet been observed.

We shall refer to such patients as “in the pipeline”.

How should the additional data be analysed?
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Examples of group sequential trials with delayed response

Example 1: HJ describe a study of a cholesterol lowering drug.
The primary endpoint is reduction in cholesterol after 4 weeks.

A total of 96 patients are to be recruited at a rate of 4 patients per
week. At each interim analysis we can expect 16 subjects to have
been treated but not yet produced a response.

If the study is stopped at an interim analysis, investigators will still
follow up the ∼16 pipeline subjects and observe their responses.

Example 2: Consider a clinical trial with a time-to-event endpoint.

Data are locked before each interim analysis. Time passes as data
are cleaned, the DMC meets, and — at one analysis — the DMC
recommends to the Steering Committee that the trial be stopped.

When stopping actually happens, more events will have occurred
and other potential events will have been adjudicated.
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The cholesterol reduction trial

Suppose a standard group sequential test (GST) is applied.
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We observe Z3 = 2.4, which exceeds the boundary value of 2.3.

The trial stops but, with the pipeline data included, Z = 2.1.

Can the investigators claim significance at level α?
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Incorporating delayed observations after a GST terminates

Whitehead (Cont. Clin.Trials, 1992) proposed the “deletion method”.

The analysis k at which termination occurs is deleted and one
behaves as if analysis k had occurred with the information level Ĩk
arising from the final set of responses.
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A boundary value b̃k is computed and H0 is rejected if, for the test
statistic including pipeline data, Z̃k ≥ b̃k.

Note: In order to reject H0, the test statistics must first cross the
upper boundary of the original group sequential design.
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Incorporating delayed observations after a GST terminates
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Ĩ2

•
•

XXX

•

•

"
"
"

b̃2∗
∗ ∗

For H0 to be rejected, the test statistics must first cross the upper
boundary of the original group sequential design. Thus, this
method protects the type I error rate conservatively.

Sorriyarachchi et al. (Biometrics, 2003) investigated the “deletion
method” and several other proposals.

They found that tests using additional “pipeline” data often had
lower power than simple GSTs which ignored these data — but
extra information ought to help!
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Incorporating delayed observations after a GST terminates

The method of Whitehead (1992) applies a GST as if response
were immediate, then we try to accommodate additional pipeline
data once this GST has terminated.

A more systematic approach is to recognise that there will be
pipeline data when designing the trial.

Interestingly, T. W. Anderson (JASA, 1964) recognised this issue,
well before the advent of modern group sequential methods.

The methods of Hampson & Jennison (JRSS, B, 2013) follow the
same basic structure that was proposed by Anderson.

With delayed response data, a trial comes to an end in two stages:

1. Stop recruitment of any more subjects,

2. After responses have been observed for all recruited
subjects, make a decision to accept or reject H0.
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Defining a group sequential test with delayed responses

For now, we assume, as in Example 1:

The primary endpoint is measured a fixed time after treatment
commences,

The endpoint will be known (eventually) for all treated subjects,

If recruitment is stopped, it cannot be re-started.

Consider a trial with responses observed time ∆t after treatment.
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At each analysis, patients arriving in the last ∆t units of time are
“in the pipeline”.
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Boundaries for a Delayed Response GST

At interim analysis k, observed information is Ik = {Var(θ̂k)}−1.
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If Zk > bk or Zk < ak at analysis k, we cease enrolment of patients
and follow-up all recruited subjects to observe their responses.

At the subsequent decision analysis, denote information by Ĩk and
the standardised test statistic by Z̃k. We reject H0 if Z̃k > ck.

If we reach the final analysis K, we reject H0 if Z̃K > cK .

Chris Jennison Group Sequential and Adaptive Clinical Trials



Delayed Response GSTs

For a particular sequence of observed responses, we apply
boundary points at a sequence of information levels of the form

I1, . . . , Ik, Ĩk.

In the example below, recruitment ceases at the second analysis
and the final decision is made with the additional “pipeline” data
bringing the information up to Ĩ2.
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Calculations for a Delayed Response GST

The type I error rate, power and expected sample size of a Delayed
Response GST depend on the joint distributions of test statistic
sequences:

{Z1, . . . , Zk, Z̃k}, k = 1, . . . ,K − 1,

and
{Z1, . . . , ZK−1, Z̃K}.

Each sequence is based on accumulating data sets.

Given {I1, . . . , Ik, Ĩk}, the sequence {Z1, . . . , Zk, Z̃k} follows
the canonical distribution we saw earlier for the sequence of
Z-statistics in a GST with immediate responses (JT, Ch. 11).

Thus, properties of Delayed Response GSTs can be calculated
using the same numerical routines that were needed for standard
group sequential designs.
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The value of information from pipeline subjects

When recruitment is terminated at interim analysis k with Zk > bk
or Zk < ak, current data suggest the likely final decision.

Pipeline data give more information to use in making this decision.

The pipeline data may produce a “reversal”, with the final decision
differing from that anticipated when recruitment was terminated.

We could, for example, observe:
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Here, accrual stops at analysis 1 because of unpromising results,
but H0 is rejected when the pipeline data are observed.
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The value of information from pipeline subjects

Or, recruitment may cease with promising data only for H0 to be
accepted.
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Note: There is no option of “banking” the evidence at analysis 1
— we assume all pipeline subjects will eventually be observed.

Decisions based on more data ought to be more accurate: perhaps
these pipeline data have helped to avoid a false positive conclusion.

An optimised design will place boundary points to achieve high
power for the permitted type I error rate, α.
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Optimising a Delayed Response GST

We specify the type I error rate α and power 1− β at θ = δ.

We set the maximum sample size nmax, number of stages K, and
the analysis schedule.

Suppose there are r nmax pipeline subjects at each interim analysis.

Let N denote the total number of subjects recruited.

Objective:

Given α, β, δ, nmax, K and r, find the Delayed Response GST
minimising

F =

∫
Eθ(N) f(θ) dθ

where f(θ) is the density of a N(δ/2, (δ/2)2) distribution.

Other weighted combinations of Eθ(N) can also be used.
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Computing optimal Delayed Response GSTs

We follow the same approach as for optimising a GST with
immediate response.

We create a Bayes sequential decision problem, placing a prior on θ
and defining costs for sampling and for making incorrect decisions.

This problem can be solved rapidly by dynamic programming.

We then search for the combination of prior and costs such that
the solution to the (unconstrained) Bayes decision problem has the
specified frequentist error rates α at θ = 0 and β at θ = δ.

The resulting design solves both the Bayes decision problem and
the original frequentist problem.

Again, the Bayes decision problem is introduced as a computational
device, but the derivation demonstrates the relationship between
admissible frequentist designs and Bayes procedures.
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An optimal design for the cholesterol treatment example

In the cholesterol treatment trial (Example 1), the primary
endpoint is reduction in serum cholesterol after 4 weeks.

Responses are assumed normally distributed with variance σ2 = 2.

The treatment effect θ is the difference in mean response between
the new treatment and control.

An effect θ = 1 is regarded as clinically significant.

It is required to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025,

Power 0.9 at θ = 1.

A fixed sample test needs nfix = 85 subjects over the two
treatments.
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An optimal design for the cholesterol treatment example

We consider designs with a maximum sample size of 96.

We assume a recruitment rate of 4 per week:

Data start to accrue after 4 weeks,

Each interim analysis will have 4× 4 = 16 pipeline subjects,

so the “pipeline fraction” is r = 16/96 = 0.17.

Recruitment will close after 24 weeks.

Interim analyses are planned after n1 = 28 and n2 = 54 observed

responses and the final decision is based on:

ñ1 = 44 responses if recruitment stops at interim analysis 1,

ñ2 = 70 responses if recruitment stops at interim analysis 2,

ñ3 = 96 responses if there is no early stopping.
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An optimal design for the cholesterol treatment example

The following Delayed Response GST minimises

F =

∫
Eθ(N) f(θ) dθ,

where f(θ) is the density of a N(0.5, 0.52) distribution.
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n1=28 n~2=44 n1=54 n~2=70 n~3=96

The values of c1 and c2 are less than 1.96. For credibility, these can
be raised to 1.96 with little change to the design’s power curve.
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2.2 Error spending Delayed Response GSTs

HJ show how to construct error spending Delayed Response GSTs.

Here, we present a variation on these methods which allows a
non-binding futility boundary.

The test is defined through two error spending functions:

f(I/Imax) for type I error probability,

g(I/Imax) for type II error probability.

Recruitment stops when the target information Imax is reached (or
will be reached with the responses from pipeline subjects).

After analysis k and its subsequent decision analysis:

The cumulative type I error will be exactly f(Ik/Imax),

The cumulative type II error will be approximately g(Ik/Imax)
(depending on how accurately Ĩk can be predicted).
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Error spending Delayed Response GSTs
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Non-binding futility boundary:

Type I error is calculated assuming recruitment still continues if
Zk < ak at interim analysis k and the futility boundary is crossed.

If recruitment is stopped when Zk < ak, a final decision to reject
H0 is not permitted, even if Z̃k > ck.
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Computing an error spending Delayed Response GST
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If we can predict Ĩk accurately, then ak, bk and ck must satisfy

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk, Z̃k > ck}

= f(Ik/Imax)− f(Ik−1/Imax),
and

Pθ=δ{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1 and [Zk < ak or

(Zk > bk and Z̃k < ck) ] } = g(Ik/Imax)− g(Ik−1/Imax).

Note: We have two equations but three unknowns, ak, bk and ck.
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Computing an error spending Delayed Response GST
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HJ noted their optimal Delayed Response GSTs with α = 0.025
often had values of c1, . . . , cK−1 less than Φ−1(1− α) = 1.96.

For reasons of credibility, they suggested increasing the values of
c1, . . . , cK−1 to 1.96 — or set c1 = · · · = cK−1 = 1.96 before
optimising over the remaining constants.

In an error spending design, we can set ck = Φ−1(1− α) = 1.96,
then we have two equations to determine ak and bk.
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Updating ck on observing Ĩk
The above boundary spends the required increments in type I and II
error probability exactly — if the predicted Ĩk is actually observed.
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If, in fact, the final information level is Ĩ ′k, we find c′k such that

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk, Z̃k > c′k}

= f(Ik/Imax)− f(Ik−1/Imax)

and increase this to c′k = 1.96 if the result is less than 1.96.

(This leads to c′k > 1.96 if Ĩ ′k < Ĩk and c′k = 1.96 if Ĩ ′k > Ĩk.)
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The ρ-family of error spending functions

HJ considered ρ-family error spending functions of the form

f(I/Imax) = αmin{1, (I/Imax)ρ},

g(I/Imax) = βmin{1, (I/Imax)ρ}.

They found the resulting Delayed Response GSTs to have close to
optimal efficiency for the objective function

F =

∫
Eθ(N) f(θ) dθ,

where f(θ) is the density of a N(0.5, 0.52) distribution.

We shall use the functions f and g to define error spending
Delayed Response GSTs with non-binding futility boundaries.

We consider designs for Example 1: the cholesterol treatment trial.
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Example 1: A ρ-family error spending GST

Given α, β and δ, we can choose an error spending delayed
response GST whose boundaries will converge at the final analysis
if {I1, Ĩ1, . . . , IK−1, ĨK−1, ĨK} follow anticipated values.

In the cholesterol trial, the anticipated sample sizes

n1 = 28, ñ1 = 44, n2 = 54, ñ2 = 72, ñ3 = 96

lead to

I1 = 3.5, Ĩ1 = 5.5, I2 = 6.75, Ĩ2 = 8.75, ñ3 = 12.

With these information levels, the boundaries of a ρ-family error
spending test with ρ = 1.345 will meet up at analysis 3.

In this case, the boundary values are

a1 = −0.409, b1 = 2.437, c1 = 1.960;

a2 = 0.664, b2 = 2.244, c2 = 1.960;

c3 = 2.069.
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Example 1: A ρ-family error spending GST

The figure shows Eθ(N) for:

1. A fixed sample study design

2. Error spending delayed response GST (ρ = 1.345)

3. Error spending GST ignoring pipeline data (ρ = 1.368)
but counting these subjects in Eθ(N)
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Both GSTs have non-binding futility boundaries.
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Example 1: A ρ-family error spending GST

−0.5 0.0 0.5 1.0 1.5

0
20

40
60

80
10

0

θ

E
θ(N

)

Fixed sample test
Delayed response GST
GST not using pipeline data

Making use of the
pipeline data leads
to some efficiency
gains for θ > 0.5.

Importantly, the pipeline data do not have a detrimental effect.

In contrast, if we apply Whitehead’s deletion method, starting
from the ρ-family error spending GST for immediate response,
power at θ = 1 falls from 0.9 to 0.872. A 10% increase in overall
sample size would be needed to this power.
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Example 2: A study with a time-to-event endpoint

Suppose a study’s endpoint is survival or progression free survival.

Events are likely to be recorded between the data set lock for an
interim analysis and a decision to stop recruitment.

If events require adjudication, a further increase may follow.

The same approach can be taken as in Example 1 to create an
error-spending Delayed Response GST.

Predicting Ĩk may be harder — but the methods can handle this.

Pipeline data may provide a substantial amount of additional
information. Then, the guiding principles should be that:

If θ = 0 using these data may help avoid a type I error;

If θ = δ pipeline data are unlikely to “reverse a positive result”.

Detailed calculations for Example 1 show this is possible!
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Further development of Delayed Response GSTs

A variety of optimality criteria

HJ show how designs can be optimised for criteria involving both
the number of subjects recruited and the time to a final decision.

The nature of a specific clinical trial will determine which
approaches may be possible, depending on whether:

All pipeline subjects must be followed to the response time;

Investigators may decide not to wait to observe pipeline subjects;

Data from (some) pipeline subjects will not be “valid” and
cannot be used.

Discussants of the paper commented on the nature of “pipeline”
data and HJ categorised possible cases in their response.
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Further development of Delayed Response GSTs

Inference on termination

HJ define P-values and confidence intervals, with the usual
frequentist properties, on termination of a Delayed Response GST.

These methods can also provide median unbiased point estimates.

Bias of maximum likelihood estimates can be corrected by applying
Whitehead’s (Biometrika, 1986) methods for standard GSTs.

Use of short-term endpoints

A delay in response reduces the benefits of sequential testing.

Pipeline patients contribute to sample size at an interim analysis
but do not provide information to help decide whether to stop.

HJ show how a short term endpoint, correlated with the primary
endpoint can be used to recover some of this efficiency loss.
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2.3 Analysis on termination of a group sequential test

How should we analyse the data after a GST terminates?

Our sample space is all possible pairs (k, Zk) on termination.

Sample space for a Pampallona & Tsiatis with ∆ = 0, K = 4
analyses, α = 0.025 and power 1− β = 0.8 at θ = 1:
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Frequentist inference involves probabilities on this sample space.
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The need for special methods

Suppose our 4-stage study with a Pampallona & Tsiatis boundary
ends at stage 3 with Z3 = 2.6.

It may be tempting to quote a 1-sided P-value of

P{N(0, 1) > 2.60} = 0.0047.

But, using this definition, we would also get a P-value ≤ 0.0047 by

stopping at stage 1 with Z1 > 3.90,

stopping at stage 2 with Z2 > 2.76,

stopping at stage 3 with Z3 > 2.60,

stopping at stage 4 with Z4 > 2.60,

and the total probability under θ = 0 of “P ≤ 0.0047” is 0.0076.

So, this “P-value” does not have the null distribution U(0, 1).
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Analysis on termination of a group sequential test (GST)

For proper frequentist inference, we first order the sample space.
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Then, we define P-values and confidence intervals with respect to
this ordering.
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(i) A P-value on termination

The P-value for H0: θ = 0 is the probability under H0 of seeing an
outcome as extreme as that observed.
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On stopping with Z3 = 2.60, the 1-sided P-value for H0: θ ≤ 0 is

Pθ=0{Stop with Z1 ≥ 3.90 or Z2 ≥ 2.76 or Z3 ≥ 2.60} = 0.0063.
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A P-value on termination

With the above definition, based on a specific ordering of the
sample space:

The P-value has a U(0, 1) distribution under H0.

If the group sequential test has one-sided type I error

probability α, the P-value is ≤ α precisely when the

test stops with rejection of H0,

i.e., in the part of the sample space coloured red in the
previous slide.

The P-value will tend to take low values when θ is

large and positive.
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(ii) A confidence interval on termination

First, we specify an ordering of the GST’s sample space.

Suppose the trial terminates at analysis k∗ with Zk∗ = Z∗.

We define the 100(1− 2α)% confidence interval for θ to be the

set of values θ for which the observed (k∗, Z∗) is in the

middle (1− 2α) of the probability distribution under θ.

This is the interval (θ1, θ2) where

Pθ=θ1{An outcome above (k∗, Z∗)} = α

and
Pθ=θ2{An outcome below (k∗, Z∗)} = α.

There is a duality between this 100(1− 2α)% confidence interval
and the family of level 2α, two-sided tests of hypotheses H: θ = θ̃.
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A confidence interval on termination

Example:

Suppose the trial stops at analysis 3 with Z3 = 2.6.

Using our specified ordering, the 95% confidence interval for θ is

(0.22, 1.77)

In contrast:

The “naive” fixed sample CI would be (0.25, 1.78).

However, it is not appropriate to use this fixed sample interval as
this fails to take account of the sequential stopping rule.

Consequently, the coverage probability of this naive, fixed sample
interval is not 1− 2α.
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Consistency of hypothesis testing and CI on termination

Suppose a group sequential trial is run to test H0: θ ≤ 0 vs
θ > 0 with one-sided type I error probability α.

Then, a 1− 2α, equal-tailed confidence interval on termination
should lie completely above θ = 0 if and only if H0 is rejected.

This happens automatically if outcomes for which we reject H0 are
at the top end of the sample space ordering — and any sensible
ordering does this.

Why the naive approach does not work

A naive 1− 2α level CI on termination lies completely above θ = 0
if an unadjusted α level, one-sided significance test rejects H0.

Since there are multiple analyses, the probability of such an
outcome is liable to be greater than the desired level α.
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(iii) Estimating θ after a group sequential test
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In a two-treatment comparison, the maximum likelihood estimate
(MLE) of θ on termination of the trial at analysis k is

θ̂M = X̄Ak − X̄Bk.

For large, positive values of θ:

high values of θ̂ lead to early stopping,

lower values of θ̂ result in more observations, so θ̂ can increase.

Thus, the MLE is biased with Eθ(θ̂M ) > θ for high values of θ.
Similarly, Eθ(θ̂M ) < θ for low values of θ.
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Bias of the MLE of θ after a Pampallona & Tsiatis test

Consider the Pampallona & Tsiatis GST with ∆ = 0, K = 4
analyses, α = 0.025 and power 1− β = 0.8 at θ = 1

The bias of the MLE can be calculated as a function of the true
effect size, θ.

−2 −1 0 1 2 3 4

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

Treatment effect

B
ia

s

MLE

The bias of the MLE is around 0.1 at values of θ just above 1.
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Correcting the bias of the MLE

Denote the bias function of the MLE by

b(θ) = Eθ(θ̂M )− θ.

Whitehead (Biometrika, 1986) suggested correcting the MLE by
subtracting an estimate of its bias.

Although the true θ is unknown, the bias of the MLE can be
estimated by b(θ̂M ).

The adjusted estimator is then

θ̂adj = θ̂M − b(θ̂M ).
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Bias of the MLE of θ after a Pampallona & Tsiatis test

Simulation results show that Whitehead’s adjusted estimator has
much smaller bias than the MLE on which it is based.

For our example:
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The adjustment almost completely removes the bias in the MLE.
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(iv) Estimation for a secondary endpoint after a GST

Stopping boundary

for the primary
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Denote the treatment effect on the primary endpoint by θ1.

Suppose the trial stops and rejects H0: θ1 ≤ 0 in favour of θ1 > 0.

On stopping, data on a secondary endpoint are analysed to
estimate the treatment effect, θ2, on this endpoint.

For an individual, primary and secondary responses are correlated.

The group sequential design leads to bias in the MLE θ̂1 — and the
correlated responses imply that bias is passed on to the MLE θ̂2.
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Estimation for a secondary endpoint after a GST

Suppose an individual’s responses are bivariate normal with
correlation ρ.

For a patient on Treatment A,

Primary endpoint X1 ∼ N(µA1, σ
2
1),

Secondary endpoint X2 ∼ N(µA2, σ
2
2).

Similarly, for a patient on Treatment B,

Primary endpoint X1 ∼ N(µB1, σ
2
1),

Secondary endpoint X2 ∼ N(µB2, σ
2
2).

The primary treatment effect is

θ1 = µA1 − µB1

and the secondary treatment effect is

θ2 = µA2 − µB2.
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Estimation for a secondary endpoint after a GST

Consider a group sequential design where the bias in the MLE θ̂1 is

b1(θ) = Eθ(θ̂1)− θ1

when the true treatment effects are θ = (θ1, θ2).

Note that Eθ(θ̂1) depends on θ1 and not on θ2.

Whitehead (Biometrics, 1986) shows that the MLE θ̂2 has bias

b2(θ) = Eθ(θ̂2)− θ2 = ρ
√

(σ2
2/σ

2
1) b1(θ)

when the true treatment effects are θ = (θ1, θ2).

Note that this bias depends on θ1 — and not on θ2.

As for the primary endpoint, we can adjust the MLE, θ̂2, by
subtracting an estimate of its bias, (ρ σ2/σ1) b1(θ̂).
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Estimation for a secondary endpoint: Example

Suppose a trial tests its primary endpoint, using a Pampallona &
Tsiatis GST with ∆ = 0, α = 0.025 and power 0.8 at θ1 = 1.

Responses are bivariate normal, ρ = 0.6 and σ2
1/σ

2
2 = 2.

The plot, for the case θ1 = 1.8 and θ2 = 2, shows the correlation
between the MLEs, θ̂1 and θ̂2, on termination of the GST.
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Estimation for a secondary endpoint: Example
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We see that the bias in the MLE θ̂2 is largely eliminated in the
adjusted estimator

θ̂2 − ρ

√
σ2

2

σ2
1

b1(θ̂).
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(v) Testing a secondary endpoint after a GST

In a trial of two treatments, A and B, a group sequential test is
carried out on the primary endpoint, which has treatment effect θ1.

Suppose H1: θ1 ≤ 0 is rejected in favour of θ1 > 0.

The investigators wish to test whether Treatment A is also superior
for a secondary endpoint, with treatment effect denoted by θ2.

Some familiarity with “gatekeeping” procedures for testing multiple
hypotheses suggests it may be legitimate to pass on the type I
error α = 0.025 to a second hypothesis test.

As this test will only be conducted once, the investigators plan to
carry out a fixed sample size, level α test of H2: θ2 ≤ 0 vs θ2 > 0
using the available data on the secondary endpoint.

Is this approach to testing the two endpoints valid?

Chris Jennison Group Sequential and Adaptive Clinical Trials



Testing a secondary endpoint: Example

Suppose the primary endpoint is tested using a Pampallona &
Tsiatis group sequential design with shape parameter ∆ = 0.

There are 4 analyses, type I error probability is α = 0.025 and
power is 0.8 at θ1 = 1.

This test has upper boundary:

Zk = 3.90/
√
k

and lower boundary

Zk = 1.48
√
k − 2.02/

√
k,

where k = 1, . . . , 4.
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If the upper boundary is crossed, the secondary endpoint is tested
in a level α, fixed sample size test, using current data.
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Testing a secondary endpoint: Example

The plot shows the probability of rejecting H2: θ2 ≤ 0, under
θ2 = 0, when the secondary endpoint is tested as described above.

For modest values of ρ, the correlation between the two endpoints,
the type I error rate for testing H2 exceeds the nominal 0.025.
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Hung, Wang and O’Neill (J. Biopharm. Statist., 2007) noted that
this approach to testing a secondary endpoint is not valid.

So, how should the secondary endpoint be tested?

To answer this, we need to consider multiple testing procedures.
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Recapitulation: Group sequential tests

• It is natural to monitor clinical trials with a view to early stopping.

• Theory and computational methods support a variety of group
sequential designs that control the type I error rate.

• These designs can be optimised for a given objective.

• Error spending designs offer efficient, flexible monitoring of a
variety of response types, including survival data.

• Information monitoring facilitates changes to ensure the trial has
enough subjects or events to achieve the desired statistical power.

• Group sequential tests can accommodate a delayed response.

• Inference on termination can provide P-values, confidence
intervals and approximately unbiased point estimates.

• In order to conduct multiple hypothesis tests group sequentially,
we shall need additional methodology.
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Part 3. Multiple testing procedures

3.1. Introduction: The familywise error rate

3.2. Bonferroni tests

3.3. Recycling type I error probability

3.4. Example: Primary and secondary endpoints

3.5. Graphical representation of multiple testing procedures

3.6. Combining multiple testing and group sequential design

3.7. Example: Testing a secondary endpoint after a group

sequential test for the primary endpoint
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3.1 Multiple testing: The familywise error rate

We just saw an example with a primary and a secondary endpoint.

More generally, a clinical trial may involve

Co-primary endpoints

Positive outcomes required for at least one endpoint

Positive outcomes required on all endpoints

Secondary endpoints, tertiary endpoints, . . .

The trial may have

Multiple treatments,

Pre-defined sub-populations of patients.

If the trial is group sequential, each hypothesis may be tested
on several occasions.
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The familywise error rate

Suppose we have h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

After our analysis, we accept or reject each of these h hypotheses.

A testing procedure’s familywise error rate under a set of values
θ = (θ1, . . . , θh) is

Pθ{Reject Hi for some i with θi ≤ 0}

= Pθ{Reject at least one true Hi}.

The familywise error rate is controlled strongly at level α if this
error rate is at most α for all possible combinations of θi values.

Then

Pθ{Reject any true Hi} ≤ α for all θ = (θ1, . . . , θh).
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3.2 Bonferroni adjustment (Carlo Bonferroni, 1892–1960)

Suppose we test h null hypotheses, each at significance level α/h.

If θ is such that all h null hypotheses are true,

Pθ{Reject at least one of H1, . . . , Hh}

≤ Pθ{Reject H1} + . . . + Pθ{Reject Hh} ≤ h
α

h
= α.

If θ is such that only some of the h null hypotheses are true,

Pθ{Reject at least one true Hi} < α.

So we have strong control of the familywise error rate.

We start by considering applications in fixed sample size study
designs . . .
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Example: A Bonferroni test with co-primary endpoints

A trial compares a new treatment against control with respect to:

Endpoint 1, Core MACE (Major Adverse Cardiac Event —

CV-related death, nonfatal stroke, or nonfatal MI)

Endpoint 2, Expanded MACE (Core MACE plus hospitalization

for unstable angina or coronary revascularization).

Type I error probability α=0.025 is divided between the endpoints.

With Z-statistics Z1 and Z2 for endpoints 1 and 2,

An effect on Core MACE is declared if

Z1 > Φ−1(1− α/2) = 2.24,

An effect on Expanded MACE is declared if

Z2 > Φ−1(1− α/2) = 2.24.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Example: Co-primary endpoints

This Bonferroni procedure can be represented graphically as:

1 2
? ?

α/2 α/2

There is a positive correlation between the two tests, due to the
common aspects of the two endpoints.

Hence, familywise type I error is protected conservatively.

Also, if one hypothesis is false, the familywise type I error
probability is at most α/2.

Power when H1 and H2 are false can be increased by “recycling”
type I error after one or other hypothesis is rejected.
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3.3 Recycling type I error probability

The Holm procedure is a version of the Bonferroni procedure that
“recycles” error probability after rejecting H1 or H2.

This method can be represented as:

1 2
? ?

α/2 α/2

-�

If H1 is rejected at level α/2, we pass that error probability to H2

and test this hypothesis at level α.

If H2 is rejected at level α/2, we pass that error probability to H1

and test this hypothesis at level α.
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Proof that FWER is protected in the Holm procedure

1 2
? ?

α/2 α/2

-�

If H1 and H2 are both true,

FWER = Pθ{Reject H1 or H2}

≤ Pθ{Z1 > Φ−1(1− α/2)}+ Pθ{Z2 > Φ−1(1− α/2)}

≤ α/2 + α/2 = α.

If H1 is true and H2 is false,

FWER = Pθ{Reject H1} ≤ Pθ{Z1 > Φ−1(1− α)} ≤ α.

H2 is true and H1 false: Similar to H1 true and H2 false.

H1 and H2 both false: A type I error cannot be made.
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3.4 Example: Primary and secondary endpoints

A hierarchical testing or “gatekeeping” procedure

Consider a trial where

The null hypothesis H1 concerns the primary endpoint,

The null hypothesis H2 relates to a secondary endpoint,

and H2 will only be tested if H1 has already been rejected.

First, we test H1 at significance level α.

If H1 is rejected, we continue and test H2 at significance level α.

1

2

?

?

α

H1, primary endpoint

H2, secondary endpoint
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Proof: FWER is protected in the gatekeeping procedure

1

2

?

?

α

H1, primary endpoint

H2, secondary endpoint

Suppose H1 is true.

A family-wise error occurs if H1 is rejected (whether or not H2 is
also rejected). So

FWER = Pθ{Reject H1} = Pθ{Z1 > Φ−1(1− α)} ≤ α.

If H1 is false and H2 is true,

FWER = Pθ{Reject H1 and then reject H2}

≤ Pθ{Z2 > Φ−1(1− α)} ≤ α.

If H1 and H2 are both false, a type I error cannot be made.
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Example: Testing co-primary and secondary endpoints

The figure below represents a testing procedure that starts with a
Bonferroni test of H1 and H2.

1 2

3

? ?

α/2 α/2

@@R ��	

H1, H2: co-primary endpoints

H3: secondary endpoint

Then, if either H1 or H2 is rejected, the associated type I error is
passed on to the test of H3.

We can prove there is strong control of FWER at level α by
considering all combinations of H1, H2 and H3 being True or False.
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Testing co-primary and secondary endpoints

We can add more “recycling” to the previous testing procedure.

1 2

3

?

@@R ���

?

@@I ��	

α/2 α/2

H1, H2: co-primary endpoints

H3: secondary endpoint

The additional lines in the graph indicate that

If P1 ≤ α/2 and P3 ≤ α/2, then H2 is tested at level α,

If P2 ≤ α/2 and P3 ≤ α/2, then H1 is tested at level α.
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Testing co-primary and secondary endpoints

We may prefer to gain maximum power for tests of co-primary
endpoints before testing a secondary endpoint.

To do this, we recycle type I error probability between H1 and H2

before allocating any error probability to H3.

A graphical representation is:

1 2

3

?
-

�

�	

?

�

@
@@R

α/2 α/2

H1, H2: co-primary

endpoints

H3: secondary

endpoint

Half of the type I
error probability is
cycled through H1,
H2 and on to H3.

The other half is
cycled through H2,
H1 and on to H3.
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3.5 Graphical representation of multiple testing procedures

As we add more options, and get more creative, we can produce
some quite complex procedures.

Two papers, published simultaneously, describe an elegant way to
describe complex multiple testing procedures.

“A recycling framework for the construction of Bonferroni-
based multiple tests” by Burman, Sonesson & Guilbaud,
Statistics in Medicine, 2009.

“A graphical approach to sequentially rejective multiple
test procedures” by Bretz, Maurer, Brannath & Posch,
Statistics in Medicine, 2009.

These procedures are closed testing procedures in which the tests
of intersection hypotheses are weighted Bonferroni tests.

It is implicit in their method of construction that these procedures
provide strong control of the FWER.
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A figure from Burman et al. (2009)

The following diagrams illustrate the graphical representations of
multiple testing procedures used by Burman et al.

(a) and (b) A parallel gatekeeping procedure

(c) and (d) A fallback procedure
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A figure from Bretz et al. (2009)

And here is an example of a graphical representation of a
procedure as defined by Bretz et al.

Question: How can we apply such a procedure in a group
sequential trial?
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3.6 Multiple testing within a group sequential design

Maurer & Bretz (Statist. in Biopharm. Research, 2013) explain
how to carry out tests of multiple hypothesis in a group sequential
trial with strong control of FWER.

Consider a multiple testing procedure for hypotheses H1, . . . ,Hh

that involves testing H1, . . . ,Hh at different significance levels,
possibly increasing these levels after other hypotheses are rejected.

Define group sequential tests of each hypothesis with type I error
rates equal to the various significance levels that may be applied.

At each analysis, conduct tests of H1, . . . ,Hh using the boundary
points of their group sequential tests for the current analysis.

In doing this, follow the testing hierarchy and “re-cycling rules” to
determine the type I error rate of each hypothesis testing boundary.

Stop the study when key conclusions have been reached.
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Combining multiple testing and group sequential design

For group sequential implementation of the above multiple testing
procedure, we need

GSTs at levels α/3, α/2 and α

for each of the hypotheses, H1, H2 and H3.
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3.7 Testing a secondary endpoint after a sequential test

A correct gatekeeping procedure

We discussed a group sequential trial comparing the effects of two
treatments on a primary endpoint. Then, if a positive result is
obtained, a secondary endpoint is tested.

In Maurer & Bretz’s scheme, we need to specify a level α group
sequential test for the secondary endpoint: this test of H2 will be
applied whenever the trial terminates.

GST of
H1

GST of
H2

?

?

α
The group sequential test of H1

determines the stopping time
for the trial

The group sequential test of H2 is
used for the secondary analysis

if and when H1 is rejected
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A correct gatekeeping procedure

Let Z1,1, . . . , Z1,K be Z-statistics for testing H1: θ1 ≤ 0

at analyses 1, . . . ,K.

The group sequential test of H1 stops at analysis k to

Reject H1 if Z1,k ≥ bk,

Accept H1 if Z1,k < ak.

Boundary values for the test of H1 control the type I error rate at

level α under θ1 = 0, i.e.,

K∑
k=1

Pθ1=0{Z1,1 ∈ (a1, b1), . . . , Z1,k−1 ∈ (ak−1, bk−1), Z1,k > bk} = α.

Suppose this GST stops to reject H1 at analysis k∗ . . .
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A correct gatekeeping procedure

Let Z2,1, . . . , Z2,K be Z-statistics for testing H2: θ2 ≤ 0.

The level α group sequential test of H2 rejects H2 at analysis k if

Z2,k ≥ ck, where

K∑
k=1

Pθ2=0{Z2,1 < c1, . . . , Z2,k−1 < ck−1, Z2,k > ck} = α.

(The trial’s stopping rule is based on the primary endpoint, so we
do not need a lower boundary for early acceptance of H2.)

When the GST of H1 has rejected H1 at analysis k∗, we reject H2

if Z2,k∗ ≥ ck∗ .

A gatekeeping procedure could reject H2 if

Z2,k ≥ ck for any k ∈ {1, . . . ,K},

so the FWER is protected conservatively.
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Example: Testing primary and secondary endpoints

In a trial comparing two treatments, denote the treatment effects
on the primary and secondary endpoints by θ1 and θ2.

Suppose the trial is conducted
group sequentially, using a
Pampallona & Tsiatis test with
∆ = 0 for the primary endpoint.

There are 4 analyses, α = 0.025
and power is 0.8 at θ1 = 1.
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If H1: θ1 ≤ 0 is rejected for the primary endpoint at analysis k∗,
we test the secondary endpoint: we reject H2: θ2 ≤ 0 if

Z2,k∗ ≥ ck∗ .

We consider two options for this test of H2.
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Example: Testing primary and secondary endpoints

Consider two options for the group sequential test of H2.

A: Pocock boundary for H2

ck = 2.361, k = 1, . . . , 4.

 

 

Zk

Analysis k

−1

0

1

2

3

4

1 2 3 4

B: OBF boundary for H2

ck = 2.024
√

4/k, k = 1, . . . , 4.
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Note: The O’Brien & Fleming boundary requires a very high value
of Z2,k∗ to reject H2 if the GST of H1 stops at the first analysis.
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Type I error probability for testing H2

A: Pocock boundary for H2
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B: OBF boundary for H2
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Type I error probabilities are calculated under θ2 = 0, but they also
depend on θ1 and the correlation, ρ, between the primary and
secondary endpoints.

The OBF test of H2 is particularly conservative when θ1 is large.
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Power for testing H2, ρ = 0.25

A: Pocock boundary for H2
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B: OBF boundary for H2
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For correlation ρ = 0.25

θ1 = 2.4 
θ1 = 2.0 
θ1 = 1.6 
θ1 = 1.2 
θ1 = 0.8 
θ1 = 0.4 

Results are shown for the case that the variance of the secondary
response is 0.5 times that for the primary response.

Power is shown as a function of θ2 for selected values of θ1.

The Pocock boundary for H2 deals better with the trial’s uncertain
termination time — which depends significantly on the value of θ1.
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Power for testing H2, ρ = 0.5

A: Pocock boundary for H2
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B: OBF boundary for H2
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For correlation ρ = 0.5

θ1 = 2.4 
θ1 = 2.0 
θ1 = 1.6 
θ1 = 1.2 
θ1 = 0.8 
θ1 = 0.4 

Results are shown for the case that the variance of the secondary
response is 0.5 times that for the primary response.

Power is shown as a function of θ2 for selected values of θ1.

Again, the Pocock boundary for H2 deals better with the trial’s
uncertain termination time — which depends significantly on θ1.
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Testing a secondary endpoint: Further options

Conservatism in the overall procedure arises because the test of H1

may stop at analysis k∗ when Z2,k∗ < ck∗ , but

Z2,k ≥ ck for some k < k∗ or k > k∗.

There are options for reducing conservatism and increasing power:

1. Reject H2 if Z2,k≥ck for some k<k∗, even though Z2,k∗<ck∗ .

However, ignoring more recent data (and not using the sufficient
statistic for θ2) may detract from the credibility of this decision.

2. Continue the trial to see if Z2,k ≥ ck at a future analysis.

However, if the primary endpoint is observed for future subjects,
the positive result on the primary endpoint could be “lost”.

Several authors have considered option (2), retaining a positive
outcome for H1, whatever the additional information about θ1.
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Testing a secondary endpoint: Further options

3. In some cases, the worst case scenario, in which a procedure’s
maximum FWER occurs, can be identified.

Then, the procedure may be calibrated so that the FWER is equal
to the specified level α in this worst case scenario. See:

Glimm, Maurer & Bretz (Stat. in Med., 2010) Hierarchical testing

of multiple endpoints in group-sequential trials.

Tamhane, Mehta & Liu (Biometrics, 2010) Testing a primary and a

secondary endpoint in a group sequential design.

Tamhane, Wu & Mehta (Stat. in Med., 2012) Adaptive extensions

of a two-stage group sequential procedure for testing primary and

secondary endpoints (I) unknown correlation between endpoints.

Tamhane, Gou, Jennison, Mehta & Curto (Biometrics, 2018) A

gatekeeping procedure to test a primary and a secondary endpoint in a

group sequential design with multiple interim looks.
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Recapitulation: Multiple hypothesis procedures

• There are many multiple testing schemes to choose from.

The most suitable choice will depend on the importance to
investigators of rejecting each null hypothesis and the likelihood
of each null hypothesis being true or false.

• Graphical representations (SiM papers, 2009) can help in
selecting — and understanding — an appropriate multiple
testing procedure.

• Methods are available to test multiple hypotheses in a group
sequential design AND control the overall type I error probability.

• When testing multiple hypotheses in a group sequential setting,
the key is to use GSTs as “testing rules” in the multiple testing
scheme: if this is not done correctly, FWER may be inflated.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Part 4. Adaptive clinical trial designs (1)

4.1. Motivation for adaptive designs

4.2. Combination tests

4.3. Sample size re-estimation

4.4. Adaptive trials that test multiple hypotheses

4.5. Closed Testing Procedures

4.6. Using combination tests in a Closed Testing Procedures
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4.1 Motivation for adaptation in clinical trials

Wall Street Journal, July 2006:

FDA Signals it’s Open to Drug Trials that Shift Midcourse

Adaptive designs may allow trials to be adjusted:

• Route more patients to the treatment that seems to work best

• Drop treatments that don’t seem to be effective

• Add more of the type of patients . . . reacting best to a
particular treatment

• Merge two different phases of drug development into one trial

With views from:

Bob O’Neill , FDA Michael Krams, Wyeth

Paul Gallo, Novartis Don Berry, M. D. Anderson Cancer Center

Tom Fleming, Univ. Washington Bruce Turnbull, Cornell University
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Adaptation in clinical trials

Adaptation to external factors

Changes in the clinical setting or economic background

Following withdrawal of a competing treatment, a smaller
treatment effect is now of clinical interest.

An improved financial position means sponsors can invest
more in this trial.

Adaptation to internal factors

Nuisance parameters affecting sample size

In-study estimates of sample variance indicate a greater
sample size is needed to achieve the intended power.

Overall failure rates in a survival study are low: higher accrual
and longer follow-up are required.
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Adaptation in clinical trials

Adaptation to internal factors . . .

Safety outcomes

Higher than expected toxicity implies dose should be reduced.

A lower rate of adverse events in the experimental treatment
suggests it will suffice to demonstrate non-inferiority, rather
than superiority.

Sub-group analyses

The new treatment benefits a particular sub-group:
investigators wish to re-define the target population.

Change of endpoint

An alternative endpoint provides better discrimination
between treatment groups: investigators wish to re-define
the primary endpoint.
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Adaptation in clinical trials

Adaptation to internal factors . . .

Response on primary endpoint

Results on the new treatment are good and it is desirable to
reach a conclusion as rapidly as possible.

Responses on the new treatment are not as good as
anticipated: investigators wish to increase sample size to
enhance power at lower effect sizes.

Response-dependent treatment allocation

Interim data suggest one treatment arm could be superior but
results are not yet statistically significant. In order to improve
treatment of patients in the trial, weight random allocation in
favour of the currently superior treatment arm.
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Adaptation in clinical trials

A trial with multiple treatments or dose levels

Eliminate weaker treatments as the study progresses.

Using a dose-response model, optimize treatment allocation
to learn most efficiently about the best choice of dose level.

Seamless Phase IIb – Phase III trials

Select the best dose level in Phase IIb.

Proceed directly to Phase III and test the treatment at this
dose level, eliminating “white space” between phases.

Combine Phase IIb and Phase III data in the final statistical
analysis.
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FDA Guidance for Industry, February 2010

Adaptive Design Clinical Trials for Drugs and Biologics

Section XI of the 2010 document stated that adaptations should
be pre-specified and access to interim data should be strictly
controlled.

“ . . . there should be comprehensive and prospective,
written standard operating procedures (SOPs) that define
who will implement the interim analysis and adaptation
plan, and all monitoring and related procedures for
accomplishing the implementation, providing for the strict
control of access to unblinded data (see the DMC
guidance)

. . . It is likely that the measures defined by the SOPs will
be related to the type of adaptation and the potential for
impairing study integrity.”
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FDA Guidance for Industry, October 2018

Adaptive Design Clinical Trials for Drugs and Biologics

The updated guidance from the FDA sets out principles for the
planning and conduct of adaptive designs under the headings

• Controlling the Chance of Erroneous Conclusions

• Estimating Treatment Effects

• Trial Planning

• Maintaining Trial Conduct and Integrity

The guidance is supportive of a variety of adaptive designs.

However, designs must guarantee control of type I error and
provide valid additional inferences on termination.

Safeguards are required to ensure the process of adaptation and
related flow of information do not undermine a trial’s integrity.
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FDA Guidance for Industry, May 2015

Adaptive Designs for Medical Device Clinical Studies

The FDA’s guidance for Studies of Medical Devices is similar in
spirit to that for Adaptive Trials for Drugs and Biologics.

The phrase “adaptive design” includes group sequential designs
with early stopping for efficacy or futility.

The document stresses the importance of:

Pre-planning and the use of pre-specified adaptation rules,

Protection of the type I error rate,

Firewalls to prevent information leakage,

Assessment of the benefits of adaptive design and weighing of
these against more complex logistical requirements,

The benefits of adaptive designs as a “learning paradigm”.
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Protecting the type I error probability

The importance of the type I error rate is widely recognised:

ICH E9 (p. 25)

“The procedures selected should always ensure that the
overall probability of type I error is controlled.”

PhRMA White paper (J. Biopharmaceutical Statistics, 2006)

“The key issue in most contexts is preservation of the type I
error rate.”

Pocock & Hughes (Controlled Clinical Trials, 1989)

“Control of type I error is a vital aid to prevent a flood of
false positives into the medical literature.”

However, for a complex adaptive procedure, it may be difficult to
demonstrate control of the type I error rate over the whole of a
multi-dimensional null hypothesis.
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4.2 Combination tests

Suppose we run a clinical trial adaptively in two stages:

Set the design of Stage 1, then conduct this part of the trial,

Analyse results from Stage 1,

Consider external information, if appropriate.

Set the design of Stage 2, informed by Stage 1 results and
external information,

Conduct Stage 2,

Analyse the results from Stage 2.

How can we test a null hypothesis with proper protection of the
type I error rate?
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Combination tests

Before the trial commences, define the null hypothesis.

Let θ denote the treatment effect vs control for a specified form of
the treatment, patient population and endpoint.

We test H0: θ ≤ 0 against θ > 0, with type I error rate α at θ = 0.

Define one-sided P-values P (1) and P (2) from hypothesis tests of
H0 based on Stage 1 and Stage 2 data, respectively.

Under θ = 0

P (1) ∼ U(0, 1).

Conditionally on all Stage 1 data and the Stage 2 design,

P (2) ∼ U(0, 1).

Hence, if θ = 0, P (1) and P (2) are independent U(0, 1)
variates.
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The inverse χ2 combination test

Reference Bauer & Köhne (Biometrics, 1994).

Initial design

Define H0 and specify the inverse χ2 combination test.

Design Stage 1, fixing the sample size and test statistic.

Stage 1

Observe the one-sided P-value, P (1), based on Stage 1 data.

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe the P-value, P (2), based on only Stage 2 data.

NB: Under θ = 0, P (1) ∼ U(0, 1), P (2) ∼ U(0, 1), independent.
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Bauer & Köhne’s inverse χ2 combination test

Bauer & Köhne’s test rejects H0 for low values of P (1) P (2).

If P ∼ U(0, 1), then

− ln(P ) ∼ Exp (1) =
1

2
χ2

2.

Thus, under θ = 0,

− ln(P (1) P (2)) ∼ 1

2
χ2

4.

Combining the two P-values in an overall test, we reject H0 if

− ln(P (1) P (2)) >
1

2
χ2

4, 1−α.

If θ < 0, then P (1) and P (2) are stochastically larger than U(0, 1)
random variables and the type I error rate is less than α.

This χ2 test was originally proposed for combining results of
several studies by R. A. Fisher in 1932.
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The inverse normal combination test

Initial design

Specify the inverse normal test for null hypothesis H0, with
weights w1 and w2 where w2

1 + w2
2 = 1.

Design Stage 1, fixing sample size and test statistic.

Stage 1

Observe the one-sided P-value, P (1), based on Stage 1 data.

Compute Z(1) = Φ−1(1− P (1)).

Design Stage 2 in the light of Stage 1 data.

Stage 2

Observe the P-value, P (2), based only on Stage 2 data.

Compute Z(2) = Φ−1(1− P (2)).

NB Under θ = 0, Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1), independent.
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The inverse normal combination test

The combination test is based on the statistic w1Z
(1) + w2Z

(2).

Under θ = 0, Z(1) and Z(2) are independent N(0, 1) so, with
w2

1 + w2
2 = 1,

w1Z
(1) + w2Z

(2) ∼ N(0, 1).

Hence, for an overall one-sided test with type I error rate α, we
reject H0 if

w1Z
(1) + w2Z

(2) > Φ−1(1− α).

If θ < 0, then Z(1) and Z(2) are stochastically smaller than N(0, 1)
random variables and the type I error rate is less than α.

If w1 and w2 are proportional to the square roots of the Stage 1
and Stage 2 sample sizes then w1Z

(1) + w2Z
(2) is the standard

Z-statistic based on the data at the end of Stage 2.

However, it is crucial that w1 and w2 are pre-specified and not
changed in response to observed data.
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A combination test with more than two groups

The combination test approach can be applied in a group
sequential framework (Lehmacher & Wassmer, Biometrics, 1999).

For k = 1, . . . ,K, define Z(k) to be the standardised test statistic
based on Stage k data alone, and define cumulative Z-statistics

Zk = (w1Z
(1) + . . .+ wkZ

(k)) / (w2
1 + . . .+ w2

k)
1/2.

Under θ = 0, the sequence {Zk} follows the canonical joint
distribution with

Cov(Zk1 , Zk2) =

√
w2

1 + . . .+ w2
k1

w2
1 + . . .+ w2

k2

for k1 < k2.

At analysis k, we compare Zk with critical values ak and bk that
define a group sequential test with type I error probability α.

Then, under θ = 0, the probability of rejecting H0 is exactly α.
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4.3 Inference after a combination test

Reference Chapter 8 of Group Sequential and Confirmatory
Adaptive Designs in Clinical Trials, Wassmer & Brannath, 2016.

In a 2-stage adaptive design with an inverse normal combination
test, methods similar to those for GSTs in Section 2.3 can be used
to derive a

P-value for H0: θ ≤ 0,

Confidence interval for θ,

Bias-adjusted estimate of θ.

P-Value

If no early stopping is planned at the interim analysis, P-values
Z(1) and Z(2) are combined to give the final P-value

1− Φ(w1 Z
(1) + w2 Z

(2))

for testing H0: θ ≤ 0 against θ > 0.
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Inference after a combination test: Confidence intervals

Confidence interval

In constructing the CI for θ, we test hypotheses H: θ = θ̃ for all
values θ̃. If H: θ = θ̃ is not rejected, θ̃ is included in the CI.

The test of H: θ = θ̃ combines Z-values

Z
(1)

θ̃
=

θ̂
(1)
− θ̃

√
{Var(θ̂

(1)
)}

and Z
(2)

θ̃
=

θ̂
(2)
− θ̃

√
{Var(θ̂

(2)
)}
,

which have independent N(0, 1) distributions if θ = θ̃.

If no early stopping is permitted at the interim analysis, θ = θ̃ is
included in a 100(1− 2α)% CI if

|w1 Z
(1)

θ̃
+ w2 Z

(2)

θ̃
| ≤ Φ−1(1− α).
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Inference after a combination test: Confidence intervals

The same method can be extended to construct a CI if the 2-stage
design incorporates early stopping to reject or accept H0: θ ≤ 0 at
the interim analysis.

However, it does not extend so easily to an adaptive group
sequential design with more than two analyses.

In that case, one can define an ordering of the sample space and,
as for GSTs, set the CI to be (θ1, θ2) where

Pθ=θ1{An outcome above the observed data} = α

and

Pθ=θ2{An outcome below the observed data} = α.

NB, this requires a fixed “adaptation rule”.

Here, it may be convenient to calculate probabilities by simulation,
implementing whatever decisions, e.g., choice of stage 2 sample
size, are specified in the adaptive trial design.
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Inference after a combination test: Point estimate

Point estimate of θ

As for a non-adaptive GST, the maximum likelihood estimator of θ
is subject to bias. This can be corrected by estimating the bias
function and subtracting the estimated bias from the MLE.

Consider the Pampallona & Tsiatis GST with ∆ = 0, K = 4
analyses, α = 0.025 and power 1− β = 0.8 at θ = 1.

But now, if 1.3 ≤ Z2 ≤ 2.0, the size of the final two groups is
increased by a factor of 1.5.
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The bias adjustment of
the MLE is just as
effective as it was for a
non-adaptive GST.
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4.4 Sample size re-estimation

A combination test can be used to protect the type I error rate
when a trial’s sample size is changed.

Consider a two-treatment comparison in which observations on
Treatments A and B, respectively, are distributed as

XAi ∼ N(µA, σ
2) and XBi ∼ N(µB, σ

2).

Objective

It is desired to test H0: θ = µA − µB ≤ 0 against θ > 0 with
type I error rate α and power 1− β at θ = δ.

In the case of known variance, the sample size formula

n =
{Φ−1(1− α) + Φ−1(1− β)}2 2σ2

δ2
(1)

gives the required value of n, the sample size per treatment.

However, in practice, only an estimate of σ2 is usually available.
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Sample size re-estimation for a response variance

We can follow an adaptive approach, using an estimate of σ2 from
early trial data to modify the initial choice of sample size.

Initial design

Specify a two-stage adaptive design, using the inverse χ2

combination rule to test H0: θ ≤ 0 against θ > 0.

Use an initial estimate σ2
0 in the sample size formula (1) to

obtain a sample size of n0 per treatment.

Stage 1

Conduct Stage 1 with n1 = n0/2 subjects per treatment.

Observe estimates θ̂1, σ̂2
1 and the t-statistic t1 for testing H0.

Convert t1 to a one-sided P-value, P (1) = Pθ=0{T2n1−2 > t1}.
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Sample size re-estimation for a response variance

After Stage 1

Calculate a new Stage 2 sample size of n2 per treatment arm.

Here, n2 may be obtained simply by using the new variance
estimate σ̂2

1 in the original sample size formula.

Or, n2 might be chosen to give conditional power 1− β
given P (1), assuming θ = θ̂1 and σ2 = σ̂2

1.

Stage 2

Calculate the t-statistic t2 for testing H0 based on Stage 2 data
alone, and obtain the P-value P (2) = Pθ=0{T2n2−2 > t2}.

The inverse χ2 combination test, which rejects H0 if

− ln(P (1) P (2)) >
1

2
χ2

4, 1−α

has type I error rate exactly equal to α.
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Sample size re-estimation for a response variance

The above approach adds to the variety of methods for dealing
with an unknown parameter, φ, that affects sample size.

Internal pilot:

Wittes & Brittain (Statistics in Medicine, 1990) proposed a simple
“plug in” of the current estimate φ̂ to update sample size. Bias in
the final φ̂ tends to cause a small inflation of the type I error rate.

Unblinded variance estimation:

Friede & Miller (Applied Statistics, 2012) show that, for normally
distributed data, sample size modification based on an unblinded
estimate of σ2 leads to almost zero type I error rate inflation.

Information monitoring:

Mehta & Tsiatis (Drug Information Journal, 2001) “plug in”
estimated information in an error spending group sequential design.
Typically, this leads to a small inflation of the type I error rate.
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Sample size re-estimation for σ2 in a GST

A Lehmacher-Wassmer K-stage group sequential design:

Weights w1, . . . , wK are specified, where w2
1 + . . .+ w2

K = 1.

Let tk be the t-statistic, on νk degrees of freedom, testing
H0: θ ≤ 0 vs θ > 0 based on responses in group k alone.

Whatever the size of the kth group of subjects, we compute the
P-value P (k) = Pθ=0{Tνk > tk} and define

Z(k) = Φ−1(1− P (k)).

At analysis k, we compare the cumulative statistic

Zk = (w1Z
(1) + . . .+ wkZ

(k)) / (w2
1 + . . .+ w2

k)
1/2

with pre-specified critical values ak and bk that define a group
sequential test with type I error probability α.

Under θ = 0, P (k) ∼ U(0, 1) and Z(k) ∼ N(0, 1), so this group
sequential combination test controls the type I error rate exactly.
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An example of sample size modification

Consider a clinical trial studying treatment of heart failure.

Failure rates on control and experimental treatments are pc and pt.

From historical data, pc ≈ 0.25 and a reduction of 0.05 is desired.

Writing θ = pc − pt, it is desired to test H0: θ ≤ 0 against θ > 0
with type I error rate α = 0.025 and power 1− β = 0.9 if θ = 0.05.

Initial design

A Bauer & Köhne two-stage design is specified.

For the above type I error rate and power, assuming pc = 0.25, a
fixed sample test needs 1461 subjects per treatment arm.

Stage 1 is planned with 730 subjects per treatment, with a view to
re-assessing requirements for the remainder of the study in the
light of their responses.
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Example: Sample size modification

Stage 1 with 730 subjects per treatment

We observe p̂
(1)
c = 0.253 and p̂

(1)
t = 0.219, so θ̂1 = 0.034 with

standard error 0.0222.

A test of H0: θ ≤ 0 has Z(1) = 0.034/0.0222 = 1.53 and P-value

P (1) = 1− Φ(1.53) = 0.0629.

The final test will reject H0 if − ln(P (1)P (2)) > 0.5χ2
4,0.975 = 5.57.

Since − ln(0.0629) = 2.77, results thus far are promising — but a
positive outcome is by no means certain.

It is learnt that the trial of a competing treatment is unsuccessful.

It is decided to increase the second stage sample size to give a
higher probability of a positive outcome under the original
alternative, θ = 0.05 — and under smaller effect sizes.
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Example: Sample size modification

Planning Stage 2 sample size

pc pt θ Stage 2 Conditional

sample size power

0.25 0.22 0.03 750 0.43

1000 0.51

1250 0.59

0.25 0.21 0.04 750 0.62

1000 0.72

1250 0.80

0.25 0.20 0.05 750 0.78

1000 0.87

1250 0.93

Chris Jennison Group Sequential and Adaptive Clinical Trials



Example: Sample size modification

Stage 2

Suppose we decide on 1000 patients per treatment arm in Stage 2.

Stage 2 data (alone) yield p̂
(2)
c = 0.251 and p̂

(2)
t = 0.221.

Hence, the Stage 2 data give θ̂2 = 0.030 with standard error 0.019.

The test of H0: θ ≤ 0 based on Stage 2 data alone has

Z = 0.030/0.019 = 1.58 and the P-value is

P (2) = 1− Φ(1.58) = 0.0570.

In the overall test,

− ln(P (1) P (2)) = − ln(0.0629)−ln(0.0570) = 2.77+2.87 = 5.64.

This is greater than 1
2 χ

2
4, 0.975 = 5.57, so H0 is rejected and it is

concluded that the new treatment has a lower failure rate.
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Sample size re-estimation in response to θ̂

In the early 2000s, the possibility of adaptive design prompted
interest in procedures that increase sample size in response to a
low interim estimate of the treatment effect — while protecting
the type I error probability.

The objective here is to increase power, recognising that the effect
size used in the original power calculation was over-optimistic.

The resulting procedures have an overall maximum possible sample
size but, depending on the observed data, the actual sample size
can be smaller than this — just like a GST.

JT have compared the properties of adaptive designs and GSTs
(Statistics in Medicine, 2003 and 2006, Biometrika, 2006).

They conclude that familiar group sequential designs can provide
almost all the available efficiency gains — whereas some proposals
for adaptive designs can be quite inefficient.
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Sample size re-estimation in response to θ̂

Mehta & Pocock (MP, Statistics in Medicine, 2011) proposed their
“promising zone” trial design, which has the option of adding
subjects to increase the (conditional) power for a range of θ̂ values.

MP describe a trial in which the response is measured 26 weeks
after the start of treatment and a large proportion of the total
sample will be treated but not yet observed at the interim analysis.

The presence of such “pipeline” subjects imposes a minimum for
the total sample size in a design with sample size re-estimation.

Most group sequential tests are designed for the case of an
immediate response, with just a few suggestions made for
incorporating data from pipeline subjects after a trial is stopped.

However, the Delayed Response GSTs proposed by Hampson &
Jennison (JRSS, B, 2013) provide a way to handle pipeline data.
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Sample size re-estimation in response to θ̂

JT (Statistics in Medicine, 2015) discuss Mehta & Pocock’s
designs and suggest ways to improve their efficiency.

JT define sample size rules that optimize certain sample size and
power criteria — achieving the same overall power as MP designs
with lower expected sample size.

The designs proposed by JT have smaller increases in sample size
occurring over a wider range than MP’s original “promising zone”.

JT’s developments within the MP framework lead, ultimately, to
the adaptive version of Hampson and Jennison’s Delayed Response
GSTs — so we see a convergence of the two approaches.

If fixed group sizes are desired, one can use Hampson and
Jennison’s non-adaptive delayed response GSTs and their efficiency
is still close to the best fully adaptive designs.

Hsiao, Liu & Mehta (2019) refer to JT’s method as the “gold
standard”.
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4.5 Adaptive trial designs to test multiple hypotheses

There may be changes to key elements during the course of a trial:

Change of treatment definition,

Change of endpoint,

Switching from a test of superiority to a test of non-inferiority.

Or, a trial may proceed in stages with design choices being made
at interim analyses

Seamless Phase 2/Phase 3 trial: Treatment selection,
followed by a confirmatory stage

Enrichment trial: Possible restriction to patients in a
pre-specified sub-group

Multi-arm multi-stage trial: Several treatments compared
to a control with elimination of poorly performing treatments.
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Adaptive trial designs to test multiple hypotheses

In some of the preceding examples, several null hypotheses may be
tested at the end of the trial.

In other cases, a single null hypothesis will be tested but the choice
of this hypothesis is data dependent — so care is needed to avoid
introducing a selection bias.

We shall apply multiple testing methods that guarantee protection
of the overall type I error rate.

These multiple testing methods will be used in conjunction with
combination tests that merge the two sets of data either side of
the interim analysis at which an adaptive decision is taken.

Selected references:

Bretz, Schmidli et al. (Biometrical Journal, 2006),

Schmidli, Bretz et al. (Biometrical Journal, 2006),

Jennison & Turnbull (J. Biopharmaceutical Statistics, 2007).
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Procedures for testing multiple hypotheses

The familywise error rate

Suppose we have h null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , h.

A procedure’s familywise error rate when θ = (θ1, . . . , θh) is

Pθ{Reject Hi for some i with θi ≤ 0}.

The familywise error rate is controlled strongly at level α if this
error rate is at most α for all possible combinations of θi values.

Then

Pθ{Reject any true Hi} ≤ α for all θ = (θ1, . . . , θh).

Using such a procedure, the probability of choosing to focus on a
parameter θi∗ and then falsely claiming significance for the
associated null hypothesis Hi∗ is at most α.
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4.6 Closed testing procedures

Marcus et al. (Biometrika, 1976) introduced a closed testing
procedure which provides strong control of FWER by combining
level α tests of each Hi and of intersections of these hypotheses.

Suppose we have null hypotheses Hi, i = 1, . . . , h.

For each subset I of {1, . . . , h}, define the intersection hypothesis

HI = ∩i∈I Hi.

Construct a level α test of each intersection hypothesis HI , i.e., a
test which rejects HI with probability at most α whenever all
hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected overall if, and only if,
HI is rejected for every set I containing index j.
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Closed testing procedures

Proof of strong control of familywise error rate

In the closed testing procedure, overall rejection of the simple
hypothesis Hj can only occur if HI is rejected for every set I
containing index j.

Let Ĩ be the set of indices of all true hypotheses Hi.

Since HĨ is true, P{Reject HĨ} = α.

For a familywise error to be committed, HĨ must be rejected.

Hence, the probability of a familywise error is no greater than α.
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Testing an intersection hypothesis

Suppose the intersection hypothesis HI = ∩i∈I Hi is the
intersection of m simple hypotheses.

For each i ∈ I, let Pi be the 1-sided P-value for testing Hi.

Denote the ordered values of the Pi by P[1] ≤ P[2] ≤ . . . ≤ P[m].

There are several ways to test an intersection hypothesis.

Bonferroni adjustment

The overall P-value for testing HI is PI = mP[1].

Simes’ method (Biometrika, 1986)

The overall P-value for HI is

PI = min
k=1,...,m

(mP[k]/k).
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Bonferroni and Simes’ methods

The Bonferroni adjustment is simple, but conservative.

In the definition of Simes’ P-value,

PI = min
k=1,...,m

(mP[k]/k),

the term for k = 1 is mP[1], i.e., the Bonferroni adjusted P-value.

Other low P-values can reduce the overall result, e.g., if P[2] is only
a little higher than P[1] so P[2]/2 < P[1], then this will reduce PI .

The Simes method is valid — and still slightly conservative —
when the Pi are independent or positively dependent.

Such positive dependence arises in a comparison of m treatments
with a common control or in tests for a treatment effect in
overlapping sub-populations.
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Dunnett’s method (JASA, 1955)

Suppose m treatments are compared with a control, responses are
normal with known variance, and sample sizes on each treatment
and the control are equal.

Each null hypothesis Hi says treatment i is no better than control.

We are to test the intersection hypothesis HI = ∩i∈I Hi.

Denote the Z-statistic arising from the test of Hi by Zi.

When each treatment effect for an Hi ∈ HI is zero,

Zi ∼ N(0, 1), i ∈ I, Cov(Zi, Zi′) = 0.5, i 6= i′.

The P-value for testing HI using Dunnett’s test is

P{max
i∈I

Zi > z∗},

where z∗ is the observed value of maxi∈I Zi, and the probability is
under the above multivariate normal distribution for {Zi, i ∈ I}.
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4.7 Using combination tests in a closed testing procedure

Suppose we have null hypotheses Hi, i = 1, . . . , h, and wish to
test these in a closed testing procedure with FWER α.

We need to define a level α test for each intersection hypothesis

HI = ∩i∈I Hi

— a simple hypothesis Hj is a special case where I = {j}.

In an adaptive trial with two stages, we can test each HI by
applying a combination test across the stages.

Each stage provides a P-value for HI and we combine these by a
pre-specified method, e.g., “an inverse normal combination test
with equal weights”.

The P-value for the second stage must be defined before that
stage commences, but it may depend on first stage responses.
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Adaptive trial designs with multiple hypotheses

The approach of using combination tests within a closed testing
procedure is widely applicable.

It provides a way to run trials with the different types of
adaptation listed earlier:

Change of treatment definition,

Change of endpoint,

Testing either superiority or non-inferiority,

Seamless Phase 2/Phase 3 trials,

Enrichment trials,

Multi-arm multi-stage trial.

We shall conclude by studying an example of a Phase 3 trial
incorporating adaptive treatment selection.
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Part 5. Adaptive clinical trial designs (2)

5.1. Enrichment designs

Combination tests and Closed Testing Procedures

Examples

Assessing the benefits of enrichment designs

5.2. Seamless Phase 2/3 designs

Combination tests and Closed Testing Procedures

Examples

Efficiency gains from combining Phases 2 and 3
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5.1 Enrichment designs

Consider a new treatment which is expected to be particularly
effective in an identified sub-group of the target population.

An “enrichment design” aims to identify differential treatment
effects in patient subgroups and adapt the trial’s focus to patients
for whom the benefit is greatest.

Results may support a licence for the full population or just the
sub-population.

“Adaptive signature designs” (Friedlin & Simon, Clin. Cancer Res.,
2005) aim to characterise a sub-population and demonstrate a
treatment effect in this sub-population in a single trial.

However, it is more common to commence a Phase III trial with a
clearly defined sub-population and with validated assays to
determine whether a patient is a member of this sub-population.

Chris Jennison Group Sequential and Adaptive Clinical Trials



Enrichment designs: A single sub-population

We shall consider clinical trials with enrichment in which we:

Start by comparing the new treatment against control in the
full population.

Examine responses at an interim stage.

If there is no evidence of treatment effect, stop for futility.

If the new treatment appears effective in the full population,
continue as before.

If the new treatment appears to benefit just the subgroup,
recruit only from the subgroup and increase the numbers in
this subgroup.

On conclusion of the trial, test null hypotheses concerning the
full population or the sub-population, as appropriate.
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Enrichment designs: A single sub-population

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

Denote the treatment effect:

In the sub-population by θ1,

In the complement of the sub-population by θ2,

Aggregated over the whole population by θ3 = λ1θ1 + λ2θ2.

The null hypothesis for the sub-population is H1: θ1 ≤ 0.

The null hypothesis for the full target population is H3: θ3 ≤ 0.

All tests are against one-sided alternatives, θ1 > 0 or θ3 > 0.
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Enrichment designs: A single sub-population

&%
'$
θ1 θ2

H1: No effect in

the sub-population

H3: No overall effect in

the full population

Stage 1

P-value for H1 from the sub-population data only is P
(1)
1 .

P-value for H3 from the full data is P
(1)
3 .

We use Simes’ method to obtain a P-value from Stage 1 data for
H13 = H1 ∩H3

P
(1)
13 = min{2 min(P

(1)
1 , P

(1)
3 ),max(P

(1)
1 , P

(1)
3 )}.

(Simes’ method is conservative here since P
(1)
1 and P

(1)
3 are

positively correlated through their overlapping sets of subjects.)
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Enrichment designs: A single sub-population

&%
'$
θ1 θ2

H1: No effect in

the sub-population

H3: No overall effect in

the full population

Case A: Stage 2 continuing with the full population

P-value for H1 from the sub-population data only is P
(2)
1 .

P-value for H3 from the full Stage 2 data is P
(2)
3 .

Simes’ method gives the P-value for H13 from the Stage 2 data

P
(2)
13 = min{2 min(P

(2)
1 , P

(2)
3 ),max(P

(2)
1 , P

(2)
3 )}.
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Enrichment designs: A single sub-population

&%
'$
θ1 θ2

H1: No effect in

the sub-population

H3: No overall effect in

the full population

Case B: Stage 2 restricted to the sub-population

P-value for H1 from the sub-population data is P
(2)
1 .

No P-value is available for testing H3 in Stage 2

P-value for H13 from Stage 2 data is simply P
(2)
13 = P

(2)
1 .
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Enrichment designs: Combining stages

A rule must be pre-specified for combining P-values from the two
stages to give tests of H1, H3 and H13.

If a certain null hypothesis has P-values p(1) and p(2) in Stages 1
and 2, a weighted inverse normal rule gives

Z(p(1), p(2)) = w1Φ−1(1− p(1)) + w2Φ−1(1− p(2)).

Here, the weights w1 and w2 should reflect the relative sample
sizes planned for Stage 1 and Stage 2 and satisfy w2

1 + w2
2 = 1.

Then, Z ∼ N(0, 1) when P (1) and P (2) are independent U(0, 1),
and the null hypothesis is rejected at level α if Z > Φ−1(1− α).

Global tests of H1 and H3 with familywise error rate α are formed
from “local” level-α tests of H1, H3 and H13, each combining
P-values from the two stages.
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Enrichment designs: Global tests

Case A: Stage 2 continuing with the full population

Global test of H1 (sub-population effect)

H1 is rejected at global level α if both H1 and H13 are
rejected in combination tests for Stage 1 and Stage 2 data.

NB This is a stronger requirement than rejection of just the
elementary hypothesis H1 due to testing multiple hypotheses.

Global test of H3 (full population effect)

H3 is rejected at global level α if both H3 and H13 are
rejected (a stronger requirement than rejection of just H3).

When continuing with the full population, it is possible to reject H1

but not H3, finding a treatment effect in the sub-population only.
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Enrichment designs: Global tests

Case B: Stage 2 restricted to the sub-population

Global test of H1 (sub-population effect)

H1 is rejected at global level α if both H1 and H13 are
rejected in combination tests for Stage 1 and Stage 2 data.

No Stage 2 P-value is available for H3 and an overall test of H3 is
not possible.

This is in keeping with the decision to enrich and focus on just the
sub-population.
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Example 1 (JT, J. Biopharmaceutical Statistics, 2007)

A trial is conducted to compare a new treatment against control in
a general population (null hypothesis H3).

The new treatment is expected to be particularly effective in men
over 50 years old (null hypothesis H1).

In testing H1 and H3, the familywise type I error rate is set at
α = 0.025.

After Stage 1 of the trial, a decision will be made whether to
enrich and recruit only older men in the remainder of the study.

A Closed Testing Procedure will be followed, using Simes’ test for
the intersection hypothesis.

For each hypothesis and the intersection hypothesis H13, Stage 1
and Stage 2 data will be combined in an inverse normal test with
weights w1 = w2 = 1/

√
2.
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Example 1, continued

Stage 1 results

Older men: P
(1)
1 = 0.02

Full population: P
(1)
3 = 0.20

Using Simes’ method, the P-value for testing H13 = H1 ∩H3 from
Stage 1 data is

P
(1)
13 = min{2 min(P

(1)
1 , P

(1)
3 ), max(P

(1)
1 , P

(1)
3 )} = 0.04.

We decide not to enrich and recruitment continues from the full
population in Stage 2.
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Example 1, continued

Stage 2 results

Older men: P
(2)
1 = 0.03

Full population: P
(2)
3 = 0.10

By Simes’ method: P
(2)
13 = 2× 0.03 = 0.06.

Combining results from the two stages

Z1 =
√

0.5 Φ−1(1− 0.02) +
√

0.5 Φ−1(1− 0.03) = 2.78,

Z3 =
√

0.5 Φ−1(1− 0.20) +
√

0.5 Φ−1(1− 0.10) = 1.50,

Z13 =
√

0.5 Φ−1(1− 0.04) +
√

0.5 Φ−1(1− 0.06) = 2.34,

P1 = 1− Φ(2.78) = 0.003,

P3 = 1− Φ(1.50) = 0.067,

P13 = 1− Φ(2.34) = 0.010.
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Example 1, continued

We have:

P1 = 0.003, P3 = 0.0673, P13 = 0.010.

Thus, H1 and H13 are rejected in local tests at level α = 0.025.

Rejection of H1 and H13 in local level-α tests implies H1 is
rejected globally — in a Closed Testing Procedure with
familywise error probability 0.025.

The adjusted P-value for H1 is P̃1 = max{P1, P13} = 0.010.

The local test of H3 has P-value 0.067. Since this is greater than
α = 0.025, H3 is not rejected globally.
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Example 1b

Consider a realisation of the trial where Stage 1 data are as before,
but it is decided to restrict recruitment to “Older men” in Stage 2.

Stage 1 results (as before)

Older men: P
(1)
1 = 0.02

Full population: P
(1)
3 = 0.20

By Simes’ method: P
(1)
13 = 2× 0.02 = 0.04.

Stage 2 results

Older men: P
(2)
1 = 0.03

Full population: P
(2)
3 is undefined

By Simes’ method: P
(2)
13 = P

(2)
1 = 0.03
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Example 1b, continued

Combining results from the two stages

Z1 =
√

0.5 Φ−1(1− 0.02) +
√

0.5 Φ−1(1− 0.03) = 2.78,

Z13 =
√

0.5 Φ−1(1− 0.04) +
√

0.5 Φ−1(1− 0.03) = 2.57,

P1 = 1− Φ(2.78) = 0.003,

P13 = 1− Φ(2.57) = 0.005.

H1 is rejected overall since both H1 and H13 are rejected in
local tests at α = 0.025.

The adjusted P-value for H1 is P̃1 = max{P1, P13} = 0.005.

As there is no Stage 2 P-value P
(2)
3 , we do not have a combination

test for H3. Hence, there is no global test of H3.
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Enrichment designs: More sub-populations

The preceding method extends to 2-stage trials with more
designated sub-populations. To do this, we must specify:

The full population and all sub-populations to be considered,

The rule for testing an intersection hypothesis with data from
a single stage of the trial,

The rule for combining results from two stages of the trial to
give an overall hypothesis test.

The study commences with recruitment from the full population.

At the assigned re-design point, interim data are studied and a
decision is taken:

To continue recruiting from the full population, or to restrict
recruitment to specific sub-populations.

To select a suitable sample for Stage 2 size in either case.
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Example 2: (JT, J. Biopharm. Statist., 2007)

In our example, suppose there are specified sub-populations:

1. The entire population

2. Men only

3. Men over 50

4. Men who are smokers

Let θ1, . . . , θ4 denote the treatment effects within the four
specified sub-populations.

The elementary null hypotheses are Hi: θi ≤ 0 for i = 1, . . . , 4.

In order to protect the familywise error rate at level α, we test
these hypotheses using a Closed Testing Procedure.

For each individual hypothesis and intersection hypothesis, we
combine P-values from the two stages by the inverse normal rule.
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Example 2: Several sub-populations

We have elementary null hypotheses Hi: θi ≤ 0 for i = 1, . . . , 4.

Within a stage, each intersection hypothesis will be tested by
combining P-values for individual hypotheses using Simes’ method.

In Stage 1

We test each Hi against θi > 0 using the estimate θ̂i from subjects

in the relevant sub-population, giving P-value P
(1)
i .

In Stage 2

It may only be possible to test some of the Hi using Stage 2 data.

For example, if recruitment is restricted to “men only”, we can test
H2, H3 and H4 but not H1, since θ1 is a weighted average of
effects on both men and women.

Thus, we obtain Stage 2 P-values P
(2)
2 , P

(2)
3 and P

(2)
4 for

hypotheses H2, H3 and H4 but we have no P
(2)
1 for testing H1.
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Example 2: Closed Testing Procedure

Formally:

In order to reject Hi∗ : θi∗ ≤ 0, we need to reject each intersection
hypothesis HI with i∗ ∈ I at level α, based on combined Stage 1
and Stage 2 data.

Here, HI = ∩i∈I Hi states that θi ≤ 0 for all i ∈ I.

Intuitively:

Some sub-populations will have better than average results due to
random variation in patient responses.

In order to avoid an inflated type I error rate, we must allow for
the multiplicity of hypotheses being tested.

If θi = 0 for i = 1, . . . , 4, the sub-population with the most
favorable results should be viewed as the best out of four
comparisons of an ineffective treatment with the control, rather
than typical results for a single, pre-specified comparison.
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Example 2: Closed Testing Procedure

Testing an intersection hypothesis HI : θi ≤ 0 for all i ∈ I

(a) We need to test the intersection hypothesis in each stage.

(b) We need to combine data from two stages.

Task (b):

A weighted inverse normal combination test is specified.

Letting P
(1)
I and P

(2)
I denote P-values for testing HI from Stage 1

and 2 data respectively, we calculate

Z(P
(1)
I , P

(2)
I ) = w1Φ−1(1− P (1)

I ) + w2Φ−1(1− P (2)
I ),

using the pre-specified w1 and w2.

Then, we reject HI if

Z(P
(1)
I , P

(2)
I ) > Φ−1(1− α).
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Task (a): Testing an intersection hypothesis in each stage

Suppose m hypotheses are involved in HI = ∩i∈I Hi.

(a) Testing HI in Stage 1

We calculate a P-value P
(1)
i from Stage 1 data for each Hi ∈ HI

and apply Simes’ method to test the intersection hypothesis HI .

With P
(1)
[i] , i = 1, . . . ,m, denoting the m P-values in increasing

order, the P-value for testing HI is

P
(1)
I = min

k=1,...,m
(mP

(1)
[k] /k).

(b) Testing HI in Stage 2

Applying the same procedure to the Stage 2 P-values P
(2)
i gives

the Stage 2 P-value P
(2)
I for HI .

If some sub-populations are dropped in Stage 2, consider only those

Hi for which a P-value P
(2)
i is available and reduce m accordingly.
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Testing an intersection hypothesis in each stage

Testing HI in Stage 1

Suppose

P
(1)
1 = 0.2, P

(1)
2 = 0.04, P

(1)
3 = 0.05, P

(1)
4 = 0.03.

In the global test of Hi∗ , we consider all sets I containing i∗.

So, for i∗ = 4, we need P-values for HI with

I = {4}, I = {1, 4}, I = {2, 4}, I = {3, 4}, I = {1, 2, 4},
I = {1, 3, 4}, I = {2, 3, 4}, I = {1, 2, 3, 4}.

For the case I = {1, 3, 4}, the ordered P-values are

P
(1)
[1] = 0.03, P

(1)
[2] = 0.05, P

(1)
[3] = 0.2

and Simes’ test gives

P
(1)
I = min

k=1,...,3
(3P

(1)
[k] /k) = 3× 0.05/2 = 0.075.
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Testing an intersection hypothesis in each stage

Testing HI in Stage 2

In Stage 2, we have P-values, P
(2)
i , for some of the Hi: θi ≤ 0,

depending on the section of the population from which recruitment
took place in this stage.

Let Ĩ be the set of indices i ∈ I for which we have a P-value P
(2)
i

and suppose there are m̃ such indices.

We can apply Simes’ method on the reduced set Ĩ, as long as it is
non-empty, yielding the P-value for testing HI

P
(2)
I = min

k=1,...,m̃
(m̃ P

(2)
[k] /k),

where P
(2)
[k] , k = 1, . . . , m̃, are the m̃ available P-values in

increasing order.

Note that if the set Ĩ is empty, its P-value will not be needed.
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Restrictions on testing sub-populations in Stage 2

If recruitment continues from the full population in Stage 2, a
P-value can be calculated for each sub-population, so all
combination tests are feasible.

If recruitment is restricted, elementary tests are only possible for
sub-populations contained completely in the new recruitment pool.

If, in our example, recruitment is restricted to “Men only”, the
sub-populations “Men over 50” and “Men who are smokers” are
still sampled fully so we can test H3 and H4 as well as H2.

However, we cannot test H1 since θ1 is a weighted average of
effects on both men and women and Stage 2 provides no
information about women.

Consequently, we can test H2, H3 and H4 at the global level.

As an example, in testing H2, the relevant sets I all contain i = 2,
so there is at least one element (i = 2) in the reduced set Ĩ.
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Example 2: (JT, J. Biopharm. Statist., 2007)

Suppose we observe

Stage 1 results

Full population: P
(1)
1 = 0.20

All men: P
(1)
2 = 0.10

Men over 50 years: P
(1)
3 = 0.03

Men who smoke: P
(1)
4 = 0.03.

After restricting recruitment in Stage 2 to “Men only”, we obtain

Stage 2 results

All men: P
(2)
2 = 0.11

Men over 50 years: P
(2)
3 = 0.08

Men who smoke: P
(2)
4 = 0.04.
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Example 2, continued

Suppose, at the end of the trial, we have the stage-wise P-values

P
(1)
i and P

(2)
i for individual hypotheses Hi, i = 1, . . . , 4:

Stage 1 Stage 2

H1: Entire population 0.20 —

H2: All men 0.10 0.11

H3: Men over 50 years 0.03 0.08

H4: Men who smoke 0.03 0.03

We wish to combine these P-values to test H2, H3 and H4, while
protecting the familywise error rate at level α = 0.025.

We first calculate stage-wise P-values, P
(1)
I and P

(2)
I for each

intersection hypothesis HI .

We then apply a weighted inverse normal combination test to each

pair P
(1)
I and P

(2)
I to give an overall P-value for HI .

Finally, we apply the Closed Testing Procedure to these P-values.
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Example 2: P-values for intersection hypotheses

P-values Combined

Stage 1 Stage 2 statistics

HI P
(1)
I P

(2)
I ZI PI

H{1} 0.20 — — —

H{2} 0.10 0.11 1.77 0.038

H{3} 0.03 0.08 2.32 0.010

H{4} 0.03 0.03 2.66 0.004

H{1,2} 0.20 0.11* 1.46 0.072

H{1,3} 0.06 0.08* 2.09 0.018

H{1,4} 0.06 0.03* 2.43 0.008

H{2,3} 0.06 0.11 1.97 0.025

H{2,4} 0.06 0.06 2.20 0.014

H{3,4} 0.03 0.06 2.43 0.008

H{1,2,3} 0.09 0.11* 1.82 0.035

H{1,2,4} 0.09 0.06* 2.05 0.020

H{1,3,4} 0.045 0.06* 2.30 0.011

H{2,3,4} 0.045 0.09 2.15 0.016

H{1,2,3,4} 0.06 0.09* 2.05 0.020

* Stage 2 P-value P
(2)
{1}∪I is set equal to P

(2)
I for I ⊆ {2, 3, 4}.
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Example 2, continued

In order to reject Hi at global level α = 0.025, each intersection
hypothesis HI with i ∈ I must be rejected at this level.

The results table shows we can reject H4 at global significance
level α = 0.025.

The other individual hypotheses are not rejected globally.

The adjusted P-value P̃i for testing Hi is the maximum combined
P-value PI over all HI with i ∈ I.

H2: All men P̃2 = max{P2, P12, P23, P24, P123,

P124, P234, P1234}
= 0.072

H3: Men over 50 years P̃3 = max{P3, . . . , P1234} = 0.035

H4: Men who smoke P̃4 = max{P4, . . . , P1234} = 0.020

So, we can reject H4 and quote the adjusted P-value P̃4 = 0.020.
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Assessing the benefits of an enrichment design

Consider a trial to investigate whether a new treatment is
beneficial to the full population or, possibly, just a sub-population.

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

The treatment effect is

θ1 in the sub-population,

θ2 in the complement of the sub-population,

θ3 aggregated over the whole population by.

We may test

H1: θ1 ≤ 0 vs θ1 > 0 and/or

H3: θ1 ≤ 0 vs θ1 > 0.
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Assessing the benefits of an enrichment design

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

First, consider a design testing just for a whole population
effect,

θ3 = λ1θ1 + λ2θ2.

The design has two analyses and one-sided type I error rate 0.025.

Sample size is set to achieve power 0.9 at θ3 = 20.

Data in each stage are summarised by a Z-value:

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z
(1)
3 Z

(2)
3 Z3 = 1√

2
Z

(1)
3 + 1√

2
Z

(2)
3
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Assessing the benefits of an enrichment design

A two stage design testing for a whole population effect θ3 has

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z
(1)
3 Z

(2)
3 Z3 = 1√

2
Z

(1)
3 + 1√

2
Z

(2)
3

Decision rules:

If Z
(1)
3 < 0 Stop at Stage 1, Accept H3

If Z
(1)
3 ≥ 0 Continue to Stage 2, then

If Z3 < 1.96 Accept H3

If Z3 ≥ 1.96 Reject H3

Since the futility boundary can be regarded as non-binding, this
design is slightly conservative.
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Assessing the benefits of an enrichment design

Assume the sub-population comprises half the total population, so
λ1 = λ2 = 0.5.

Properties of the design for the whole population effect, θ3:

θ1 θ2 θ3 Power to reject

H3: θ3 ≤ 0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

It is feasible to identify at Stage 1 that θ1 may be quite high while
a smaller value of θ2 means that θ3 is low.

In such a situation, we may choose to switch resources to test for a
treatment effect in only the sub-population.
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Assessing the benefits of an enrichment design

We wish to be able to consider two null hypotheses:

H3: θ3 ≤ 0 Treatment is not effective in the whole population,

H1: θ1 ≤ 0 Treatment is not effective in the sub-population.

Since θ3 = 0.5 θ1 + 0.5 θ2, either H1 or H3 may be true on its own.

In applying a Closed Testing Procedure, we also test the
intersection hypothesis

H13: θ1 ≤ 0 and θ3 ≤ 0.

In order to reject H1 globally in a Closed Testing Procedure with
family-wise type I error rate α, we must reject both H1 and H13 in
local, level α tests.

Similarly, we reject H3 overall if both H3 and H13 are rejected in
local, level α tests.
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An adaptive enrichment design

At Stage 1, if θ̂
(1)

3 < 0, stop to accept H3: θ3 ≤ 0.

If θ̂
(1)

3 > 0 and the trial continues:

If θ̂
(1)

2 < 0 and θ̂
(1)

1 > θ̂
(1)

2 + 8, Restrict to sub-population 1
and test H1 only.

Otherwise, Continue with full population
and test H1 and H3.

Stage 2 sample size is the same in both cases, with numbers
recruited from the sub-population increasing under enrichment.

Final decisions for global rejection of H1 and H3 follow the Closed
Testing Procedure based on local, level α tests of H1, H3 and H13.

The above rule for deciding whether to enrich is rather arbitrary:
for a systematic approach to optimising the enrichment rule see
Burnett & Jennison (2020).
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Local, level α tests for H1, H3 and H13

We test each null hypothesis, H1, H3 and H13, in a 2-stage group
sequential test.

Let Hi be one of these hypotheses and Z
(1)
i and Z

(2)
i the

Z-statistics for Hi based on data collected in Stages 1 and 2.

The 2-stage group sequential test rejects Hi after Stage 2 if

1√
2
Z

(1)
i +

1√
2
Z

(2)
i ≥ Φ−1(1− α) = 1.96.

Defining Z
(1)
i and Z

(2)
i

For H1, we define Z
(1)
1 and Z

(2)
1 from estimates θ̂

(1)

1 and θ̂
(2)

1 of θ1

based on data collected Stages 1 and 2, respectively.

For H3, we define Z
(1)
3 and Z

(2)
3 from estimates θ̂

(1)

3 and θ̂
(2)

3 of θ3

based on the data from each stage.

It remains to define Z
(1)
13 and Z

(2)
13 for testing H13.
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Local, level α tests for H1, H3 and H13

Testing H13 in Stage 1

To maximise the probability of rejecting H3 globally, we might set

Z
(1)
13 = Z

(1)
3 .

Alternatively, if our priority is to demonstrate an effect in the
sub-population if only this effect is present, we may set

Z
(1)
13 = Z

(1)
1 .

A compromise is to combine these statistics as

Z
(1)
13 = (Z

(1)
3 + Z

(1)
1 )/
√

(2 +
√

2).

Here, the factor 1/
√

(2 +
√

2) makes the variance of Z
(1)
13 equal

to 1 — avoiding the conservatism of Simes’ test.
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Local, level α tests for H1, H3 and H13

Testing H13 in Stage 2

If recruitment from the full population continues in Stage 2, we
shall set

Z
(2)
13 = Z

(2)
3 .

If “enrichment” occurs and recruitment is restricted to the
sub-population in Stage 2, we set

Z
(2)
13 = Z

(2)
1 .
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Summary of Z-statistics for testing H1, H3 and H13

When continuing with the full population:

Stage 1 Stage 2

H1 Z
(1)
1 Z

(2)
1

H3 Z
(1)
3 Z

(2)
3

H13 Z
(1)
13 Z

(2)
3

When switching to the sub-population:

Stage 1 Stage 2

H1 Z
(1)
1 Z

(2)
1

H13 Z
(1)
13 Z

(2)
1

Note the common test statistic for H13 in Stage 1 — which must
be pre-specified.
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Results: Power of non-adaptive and adaptive designs

Non-adaptv Adaptive

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.47 0.41 0.88

2. 20 0 10 0.37 0.33 0.25 0.58

3. 20 20 20 0.90 0.04 0.83 0.87

4. 20 10 15 0.68 0.15 0.57 0.72

Cases 1 & 2: Testing focuses (correctly) on H1, but it is still
possible to find an effect (wrongly) for the full population.

Overall power is increased.

Case 3: Restricting to the sub-population reduces power for
finding an effect in the full population.

Case 4: Adaptation improves overall power a little.
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The benefits of an enrichment design

In creating an enrichment design, we can favour specific goals
when defining:

The rule for switching to the sub-population,

The test of the intersection hypothesis.

However, we cannot eliminate the probability of making an error in
these decisions.

This is to be expected. In our example, the standard error of the

interim estimates θ̂
(1)

1 and θ̂
(1)

2 is 12.3 — much higher than the
differences between θ1 and θ2 that interest us.

Although restricting attention to a sub-population can help
improve power, higher overall sample size is needed if we require
accurate inference for each sub-population.
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The benefits of an enrichment design

Reference Burnett & Jennison, “Adaptive enrichment trials:
What are the benefits?” Statistics in Medicine, 2020.

Burnett & Jennison (hereafter, BJ) considered a two-arm trial with
a specified sub-population in which the new treatment was
expected to be particularly beneficial.

BJ studied adaptive enrichment designs using a closed testing
procedure with Simes’ test for the intersection hypothesis and
inverse normal combination tests to combine data across stages.

They proposed a gain function to measure the perceived benefit
from the trial outcome, depending on treatment effects in the full
population and sub-population and which null hypotheses were
rejected.

They specified a prior distribution for the treatment effects.
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The benefits of an enrichment design

BJ derived the enrichment rule that maximised the expected, gain
averaging over the prior distribution for the treatment effects.

Optimal decision: Enrich if the interim estimate of (θ1, θ2) is below
the line, otherwise continue to recruit from the full population.
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The benefits of an enrichment design

BJ compared the optimised adaptive enrichment design against
designs with the same total sample size:

A simple trial design for the full population,

A trial with recruitment only from the sub-population.

They found treatment effects (θ1, θ2) for which the enrichment
design was superior to both non-adaptive designs — but by quite a
small amount.

Optimal design

FF: Non-adaptive, full population

AE: Adaptive enrichment

FS: Sub-population only
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The benefits of an enrichment design

A more positive conclusion:

BJ found cases where the adaptive enrichment design was clearly
superior to the simple full population trial.

Although a trial confined to the sub-population from the outset
could have even higher expected gain, investigators may be
reluctant to focus only on the sub-population before seeing any
data at all.

BJ’s results show the importance of defining study objectives and
comparing adaptive designs against simpler alternatives to make
sure there are likely to be significant benefits from running a more
complex study.
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Conclusions: Enrichment designs

• With the advent of biomarkers and personalised medicine,
there is a desire for methods that allow adaptation to focus on
a subgroup of patients during a clinical trial.

• Such methods are feasible using combination tests and a
closed testing procedure.

• Restricting attention to a sub-population can be effective in
improving power.

• However, higher overall sample size is needed for more
accurate sub-population inference.

• There is continuing research on more complex trial scenarios
and inference on termination.
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5.2 Seamless Phase 2/3 designs

Phase 2b

Several dose levels (or other variants) of a treatment and a control
are compared to select a dose and to confirm that this treatment
offers an improvement on the control.

Phase 3

This confirmatory study aims to demonstrate superiority against
control of the treatment selected in Phase 2b.

Stages:

Write Phase 2b protocol, seek ethical and regulatory approval,
(FDA, IRBs, . . . )

Run Phase 2b, analyse data, reach conclusions.

Write Phase 3 protocol, seek ethical and regulatory approval,
(FDA, IRBs, . . . )

Run Phase 3, analyse data, reach final conclusion.
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Planning the Phase 3 trial after Phase 2 is complete

Planning the Phase 3 trial after Phase 2 allows investigators to
make use of information gained in Phase 2.

They may decide to modify:

Treatment definition,

Target population,

Primary endpoint,

Sample size.

Positive results in Phase 2 will help recruitment for participation in
Phase 3.

But, planning and gaining approval for the Phase 3 trial can be
time-consuming.

If the final outcome is likely to be positive, the sooner this
conclusion can be reached, the better.
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Inferentially seamless Phase 2/3 trials

Requirements

A single protocol for the combined Phase 2b and Phase 3 trials.

Rules for a committee managing the trials to follow as they:

Decide whether to proceed to Phase 3,

Select the dose level for Phase 3 considering efficacy and safety,

Use information from Phase 2, e.g., estimated treatment effect
or response variance to set the Phase 3 sample size.

NB Expect everyone else will be blinded to the Phase 2 results.

Potential benefits

Eliminating the “white space” between phases,

Efficiency gain from using Phase 2 data in the final analysis.

Chris Jennison Group Sequential and Adaptive Clinical Trials



A Closed Testing Procedure with combination tests

Reference: Bretz, Schmidli et al. (Biometrical Journal, 2006).

Suppose we test k dose levels plus the control in Phase 2.

Let θi, i = 1, . . . , k, denote the effect size of dose level i vs the
control treatment and define θ = (θ1, . . . , θk).

We consider the null hypotheses Hi: θi ≤ 0, for i = 1, . . . , k.

Procedure

After Phase 2, select dose level i∗ to advance to Phase 3.

Test Hi∗ : θi∗ ≤ 0 at significance level α, with allowance for
selecting Hi∗ from k null hypotheses based on Phase 2 results.

Formally

We shall define a procedure controlling the familywise error rate.

Then, for all possible vectors of treatment effects θ

Pθ{Reject any true Hi} ≤ α.
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A Closed Testing Procedure

We have data:

Phase 2

Treatment effect estimates θ̂
(1)

i , i = 1, . . . , k,

Phase 3

Treatment effect estimate θ̂
(2)

i∗ .

Here, dose i∗ is selected based on a high observed treatment effect

in Phase 2, θ̂
(1)

i∗ , and good safety outcomes.

Analysing these data:

In order to reject Hi∗ : θi∗ ≤ 0, we need to reject each intersection
hypothesis HI with i∗ ∈ I at level α.

Here, HI = ∩i∈I Hi states that θi ≤ 0 for all i ∈ I.
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A Closed Testing Procedure

Formally:

In order to reject Hi∗ : θi∗ ≤ 0 globally, we need to reject each
intersection hypothesis HI with i∗ ∈ I in a local, level α test,
based on the combined data from Phases 2 and 3.

Intuitively:

Dose i∗ is chosen because of good Phase 2 results.

We must adjust for this choice in order to avoid selection bias
when adding the Phase 2 data on dose level i∗ to Phase 3 data in
the final analysis .

Under the global null hypothesis θ = (0, . . . , 0), we should

view θ̂
(1)

i∗ as the highest estimated effect from k comparisons of
an ineffective dose with the control, rather than typical results
for a single, pre-specified dose.
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A Closed Testing Procedure

Testing an intersection hypothesis HI : θi ≤ 0 for all i ∈ I

(a) We need to test the intersection hypothesis in each stage.

(b) We need to combine data from two stages.

Task (b):

Denote the P-value for testing HI in Phase 2 by P
(1)
I .

Denote the P-value for testing HI in Phase 3 by P
(2)
I .

An inverse χ2 combination test rejects HI if at level α

− log(P
(1)
I P

(2)
I ) >

1

2
χ2

4, 1−α.

An inverse normal combination test rejects HI if

w1Φ−1(1− P (1)
I ) + w2Φ−1(1− P (2)

I ) > Φ−1(1− α).

where w1 and w2 are pre-specified and w2
1 + w2

2 = 1.
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Task (a): Testing an intersection hypothesis in each stage

Testing HI is most complex in Phase 2

For each i ∈ I, let P
(1)
i denote the 1-sided P-value for testing

Hi: θi ≤ 0 against θi > 0.

Suppose HI is the intersection of m simple hypotheses and denote

their P-values in increasing order by P
(1)

[j] , j = 1, . . . ,m.

Bonferroni adjustment:

The P-value for testing HI is

P
(1)
I = mP

(1)
[1] .

Simes’ method (Biometrika, 1986):

The P-value for HI is

P
(1)
I = min

j=1,...,m
(mP

(1)
[j] /j).
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Dunnett’s method (JASA, 1955)

Suppose HI = ∩i∈I Hi is the intersection of m simple hypotheses.

Each Hi concerns the comparison of one dose against the control.

Thus, we have the situation discussed in Section 4.5 where m
treatments are compared with a control, responses are normal, and
sample sizes on each treatment and the control are equal.

We can, therefore, use Dunnett’s method.

Denote the Z-statistic arising from the test of Hi by Zi. Let
Z∗ = maxi∈I Zi and suppose the value attained by Z∗ is z∗.

The P-value for testing HI using Dunnett’s test is

P{max
i∈I

Zi > z∗}

when θi = 0 for all i ∈ I, so the Zi are multivariate normal,
Zi ∼ N(0, 1), i = 1, . . . ,m, and Cov(Zi, Zi′) = 0.5 for i 6= i′.
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Testing an intersection hypothesis in each stage

Testing HI in Phase 3

Having selected dose i∗, we need to reject each HI with i∗ ∈ I in
order to reject Hi∗ : θi∗ ≤ 0 overall.

Only dose level i∗ and the control are studied in Phase 3.

Thus, a test of HI with i∗ ∈ I using Phase 3 data must be based

on θ̂
(2)

i∗ — and there is just one such test.

Hence, all HI of interest have the common P-value P
(2)
I = P

(2)
i∗ .
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Combining P-values from Phases 2 and 3

Having selected dose i∗, we consider each HI with i∗ ∈ I.

In testing HI , we combine the Phase 2 P-value P
(1)
I with the

Phase 3 P-value P
(2)
I = P

(2)
i∗ .

So, the inverse χ2 combination test rejects HI for high values of

− log(P
(1)
I P

(2)
i∗ ),

while the inverse normal combination test rejects HI for high
values of

w1Φ−1(1− P (1)
I ) + w2Φ−1(1− P (2)

i∗ ).

Hence, rejection of Hi∗ depends on the highest value of P
(1)
I

appearing in these formulae and the key statistic from Phase 2 is

max
I
P

(1)
I over sets I containing i∗.
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An example using Simes’ test

Phase 2 results

-

Dose i

6
θ̂

(1)

i

1 2 3 4

•

• •
• We select i∗ = 4

for Phase 3.

Suppose P
(1)

1 = 0.2, P
(1)

2 = 0.04, P
(1)

3 = 0.05, P
(1)

4 = 0.03.

We need to find maxI P
(1)
I over sets I containing i∗ = 4.

First consider single element sets I containing i∗ = 4

There is just one set, I = {4}, with P-value P
(1)
I = P

(1)
4 = 0.03.
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An example using Simes’ test, continued

In Phase 2: P
(1)

1 = 0.2, P
(1)

2 = 0.04, P
(1)

3 = 0.05, P
(1)

4 = 0.03.

Two-element sets I containing i∗ = 4

The largest P
(1)
I comes from I = {1, 4}.

The ordered P-values are P
(1)

[1] = 0.03 and P
(1)

[2] = 0.2, so

P
(1)
I = min

j=1,2
(2P

(1)
[j] /j) = 2× 0.03 = 0.06.

Three-element sets I containing i∗ = 4

The largest P
(1)
I comes from I = {1, 3, 4}.

The ordered P-values are P
(1)

[1] = 0.03, P
(1)

[2] = 0.05, and

P
(1)

[3] = 0.2, so

P
(1)
I = min

j=1, 2, 3
(2P

(1)
[j] /j) = 3× 0.05/2 = 0.075.
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An example using Simes’ test, continued

In Phase 2: P
(1)

1 = 0.2, P
(1)

2 = 0.04, P
(1)

3 = 0.05, P
(1)

4 = 0.03.

Four-element sets I containing i∗ = 4

There is just one four-element set, I = {1, 2, 3, 4}.

The ordered P-values for are P
(1)

[1] = 0.03, P
(1)

[2] = 0.04,

P
(1)

[3] = 0.05 and P
(1)

[4] = 0.2,so

P
(1)
I = min

j=1,...,4
(4P

(1)
[j] /j) = 4× 0.05/3 = 0.067.

Conclusion:

The maximum value of P
(1)
I over all sets I containing i∗ = 4

comes from I = {1, 3, 4}, for which

P
(1)
I = 0.075.

This value will be carried forward to be combined with P
(2)

4 .
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An example using Dunnett’s test

Phase 2 results

-

Dose i

6
θ̂

(1)

i

1 2 3 4

•

• •
• We select i∗ = 4

for Phase 3.

P
(1)

1 = 0.2, P
(1)

2 = 0.04, P
(1)

3 = 0.05, P
(1)

4 = 0.03.

The Dunnett P-value for intersection hypothesis HI depends on

the smallest P
(1)
i for i ∈ I and it increases with the number of

elements of I.

For sets I containing i∗ = 4, the smallest P-value is P
(1)

4 = 0.03
and the largest such set is I = {1, 2, 3, 4}.
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An example using Dunnett’s test, continued

We need to find the Dunnett P-value for the intersection
hypothesis HI with I = {1, 2, 3, 4}.

The smallest Phase 2 P-value for a dose i with i ∈ I is
P

(1)
4 = 0.03 and this has Z-value

P
(1)

4 = Φ−1(1− 0.03) = 1.88.

Thus, the Dunnett P-value for I = {1, 2, 3, 4} is

P
(1)
I = P{ max

i=1,...,4
(Zi) > 1.881} = 0.0918

— which is calculated assuming the Zi are multivariate normal,
Zi ∼ N(0, 1), i = 1, . . . , 4, and Cov(Zi, Zi′) = 0.5 for i 6= i′.

This value will be carried forward to be combined with P
(2)

4 .
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Summary: Combining Phase 2 and Phase 3 data

In Phase 2: Select dose i∗ and carry forward

P ∗1 = max
I: i∗∈I

P
(1)
I .

In Phase 3: Test dose i∗ against control and find P
(2)
i∗ .

Take P
(2)
i∗ as the Phase 3 P-value for all tests of intersection

hypotheses involving dose i∗.

Overall: Apply a combination test to P ∗1 and P
(2)
i∗ to see if the

Closed Testing Procedure rejects Hi∗ : θi∗ ≤ 0.

Flexibility: We can select dose i∗ for efficacy, safety, or other

factors — it is not necessarily the dose with maximum θ̂
(1)

i .

Efficiency: The use of Phase 2 data in the final analysis should
increase power, or reduce the sample size needed for a given power.
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Method of Thall, Simon & Ellenberg (Biometrika, 1988)

Thall, Simon & Ellenberg (TSE) proposed the 2-stage design:

Phase 2

Take m1 observations on each dose i = 1, . . . , k and control,

Identify θ̂
(1)

i∗ , the maximum of the effect estimates θ̂
(1)

i ,

If θ̂
(1)

i∗ < C1, stop and accept H0: θ1 ≤ 0, . . . , θk ≤ 0,

If θ̂
(1)

i∗ ≥ C1, select dose i∗ and proceed to Phase 3.

Phase 3

Take m2 observations on dose i∗ and the control,

Combine data in Ti∗ = (m1 θ̂
(1)

i∗ +m2 θ̂
(2)

i∗ )/(m1 +m2),

If Ti∗ < C2, accept H0,

if Ti∗ ≥ C2, reject H0 and conclude θi∗ > 0.
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The method of Thall, Simon & Ellenberg

In TSE’s method, the statistic Ti∗=(m1θ̂
(1)

i∗ +m2θ̂
(2)

i∗ )/(m1 +m2)

is the simple estimate of θi∗ from pooled Phase 2 and 3 data.

The values of m1, m2, C1 and C2 can be chosen to satisfy type I
error and power requirements.

Type I error

Treatment i∗ is said to be “chosen” if

Treatment i∗ is selected at the end of Phase 2, and

H0 is rejected in favour of θi∗ > 0 in the final analysis.

TSE define the type I error rate as the maximum value of

P{Any experimental treatment is “chosen”}

for H0: θ1 ≤ 0, . . . , θk ≤ 0, which occurs when θ = (0, . . . , 0).
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The method of Thall, Simon & Ellenberg

Power

-

0 δ1 δ2

Marginal
improvement

Clinically significant
improvement

×× ×× ×

Any dose with θi ≥ δ2 is said to be “acceptable”.

TSE consider cases of θ = (θ1, . . . , θk) where:

At least one dose is acceptable,

No θi lies in the interval (δ1, δ2).

They define the power function as

Pθ{An acceptable dose is selected and the

corresponding Hi is rejected}.
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The method of Thall, Simon & Ellenberg

Power

TSE show that power is minimized in the cases described above
under the least favourable configuration θ∗, where

θ1 = . . . = θk−1 = δ1 and θk = δ2.

Numerical integration enables parameters m1, m2, C1 and C2 to
be found with type I error probability α when θ = (0, . . . , 0) and
power 1− β at θ = θ∗.

Optimisation

There are two degrees of freedom left when choosing the four
constants m1, m2, C1 and C2 to satisfy two constraints.

TSE find the design that minimises expected sample size averaged
over the two cases θ = (0, . . . , 0) and θ = θ∗.
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The method of Thall, Simon & Ellenberg

The TSE method has familywise error rate α

TSE set their type I error probability α when θ = (0, . . . , 0).

For “strong control” of the familywise error rate we must bound
the maximum probability of “choosing” a treatment with θi ≤ 0
for all vectors θ.

JT (J. Biopharmaceutical Statistics, 2007) show the familywise
error rate is maximised when θ = (0, . . . , 0) and, hence, the
familywise error rate is protected at level α.

Adding flexibility

JT express the TSE method as a Closed Testing Procedure.

They define the necessary tests of intersection hypotheses and
explain how to adapt these when a treatment i∗ is selected with

θ̂
(1)

i∗ ≤ max
i=1,...,k

θ̂
(1)

i .

The type I error rate is then met conservatively.
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Example JT (J. Biopharm. Statistics, 2007)

Disease: Asthma,

Endpoint: Asthma quality of life score (AQLS) at 6 weeks,

Four treatment groups (doses) and a control group,

Responses are assumed to be normal with variance 12.5.

Phase 2:

100 observations per group,

If all θ̂
(1)

i < 0, i = 1, . . . , 4, the trial is halted as futile,

Otherwise, take the dose with the highest θ̂
(1)

i to Phase 3.

Phase 3:

500 observations on the control and the dose selected in
Phase 2.
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Example

You are a new statistician just hired by a small pharma company.

You are presented with data from a Phase 2 trial and a Phase 3
trial for asthma treatments, conducted as described above.

You are to analyse these data and, if results are positive, present
these in an NDA submission.

(The statistician who designed the trials has just moved to a
competitor.)

How do you proceed?

2
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Example: The results

Phase 2 results

Control Dose 1 Dose 2 Dose 3 Dose 4

n 100 100 100 100 100

P (1-sided) 0.20 0.04 0.05 0.03

Z 0.84 1.75 1.64 1.88

Dose i∗ = 4 was selected to go forward to Phase 3.

Phase 3 results

Control Dose 4

n 500 500

P (1-sided) 0.04

Z 1.75

Can dose 4 be recommended at significance level α=0.025 ?
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Example: What did the protocol or SAP specify?

You find one of the following:

1. Conventional

Separate Phase 2 and Phase 3 trials were conducted with the
final decision to be made using only the Phase 3 data.

2. Bauer & Köhne

Combination of Phase 2 and Phase 3 results using

(a) inverse χ2 or (b) weighted inverse normal
combination test,

(i) Simes’ test or (ii) Dunnett’s test for
intersection hypotheses.

3. The method of Thall, Simon & Ellenberg

The final test is based on the estimate of θi∗ from pooled
Phase 2 and Phase 3 data — but the critical value accounts for
the selection of dose i∗.
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Results: Conventional protocol

The Phase 3 P-value of 0.04 is greater than 0.025,

The null hypothesis is not rejected,

The result of the trial is negative.
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Results: Bauer & Köhne

Stage 1:

In testing intersection hypotheses in Stage 1, we find P ∗1 ,

the largest P-value P
(1)
I for a set I containing the index of

the selected dose, i∗ = 4.

(i) Simes’ method

P1 = max
I: 4∈I

{P (1)
I } = 0.075.

The maximum comes from I = {1, 3, 4} and equals 0.075, as
explained earlier.

(ii) Dunnett’s method

P1 = max
I: 4∈I

{P (1)
I } = 0.0918.

The maximum P
(1)
I comes from I = {1, 2, 3, 4}.
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Results: Bauer & Köhne

Stage 2:

The intersection hypotheses of interest are those containing i∗ = 4.

All of these yield the same P-value, P
(2)
I = 0.04.

(a) Combining P ∗
1 and P

(2)
I by the inverse χ2 method

Simes’ test: With P ∗1 = 0.075, the inverse χ2 statistic is

−2 log(P ∗1 P
(2)
I ) = −2 log(0.075× 0.04) = 11.62

with significance level P{χ2
4 > 11.6} = 0.0204.

Dunnett’s test: With P ∗1 = 0.0918, the inverse χ2 statistic is

−2 log(P ∗1 P
(2)
I ) = −2 log(0.0918× 0.04) = 11.21

with significance level P{χ2
4 > 11.21} = 0.0243.

So, both global tests find dose 4 effective at level α = 0.025.
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Results: Bauer & Köhne

(b) Combining P ∗
1 and P

(2)
I by the inverse normal method

Weights for each stage are proportional to the square root of
sample size.

Simes’ test: With P ∗1 = 0.075 and P
(2)
I = 0.04, the inverse

normal statistic for testing an HI with i∗ = 4 ∈ I is√
100/600 Φ−1(1− 0.075) +

√
500/600 Φ−1(1− 0.04) = 2.186

with significance level 1− Φ(2.186) = 0.0144.

Dunnett’s test: With P ∗1 = 0.0918 and P
(2)
I = 0.04, the

inverse normal statistic is√
100/600 Φ−1(1−0.0918)+

√
500/600 Φ−1(1−0.04) = 2.141

with significance level 1− Φ(2.141) = 0.0161.

Again, both global tests find dose 4 effective at level α = 0.025.
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Results: Thall, Simon & Ellenberg

Stage 1

Z
(1)
i∗ = 1.88, θ̂

(1)

i∗ = Z
(1)
i∗

√
2σ2/m1 = 0.940.

Stage 2

Z
(2)
i∗ = 1.75, θ̂

(2)

i∗ = Z
(2)
i∗

√
2σ2/m2 = 0.391.

Combining

The TSE statistic is

Ti∗ =
100 θ̂

(1)

i∗ + 500 θ̂
(2)

i∗

600
= 0.483,

or, equivalently,

Zi∗ =

√
100

600
· Z1,i∗ +

√
500

600
· Z2 = 2.365.
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Results: Thall, Simon & Ellenberg

The TSE statistic is Ti∗ = 0.483 or, equivalently, Zi∗ = 2.365.

The critical value C2 for Ti∗ is determined by the requirement

P{θ̂
(1)

i∗ > C1 = 0 and Ti∗ > C2} = α = 0.025

when θ1 = . . . = θk = 0, which gives C2 = 0.449.

The corresponding critical value for Zi∗ is 2.20.

Since Ti∗ > 0.449 (and Zi∗ > 2.20), the null hypothesis H4 = Hi∗

is rejected by the overall test with familywise type I error 0.025.

Thus, the trial has a positive outcome and a recommendation can
be made in support of dose 4.
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Efficiency gains from combining Phase 2 and Phase 3 data

Inferentially seamless Phase 2/3 designs carry a high organisational
cost, so it is important they should provide substantial benefits.

It is therefore of interest to compare:

Separate Phase 2 and Phase 3 trials

versus

Seamless designs with Phase 2 data used at the end of Phase 3.

Since the vector of treatment effects is k-dimensional, there are
many scenarios to consider.

There are also many options for conducting the final analysis.
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Efficiency gains from combining Phase 2 and Phase 3 data

Jennison & Turnbull (J. Biopharm. Statistics, 2007) investigated
the power of different testing procedures for the Asthma trial.

They considered situations when the vector of treatment effects is
of the form θ = (0, 0, 0, δ).

We shall extend their results to include:

The “conventional” method, using only Phase 3 data in the
final hypothesis test,

Inverse normal and inverse χ2 combination tests paired with
Simes and Dunnett rules for testing intersection hypotheses,

TSE: The method proposed by Thall, Simon & Ellenberg
(Biometrika, 1988).
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Power functions of six selection and testing procedures

Power of six 2-stage procedures when θ = (0, 0, 0, δ),

i.e., three doses are ineffective and the other has effect size δ:
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The values of m1 and m2 and the stopping rule are the same for all
six methods, so each procedure has the sample size distribution.
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Power functions of six selection and testing procedures
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The TSE procedure has slightly higher power than the inverse
normal combination test using a Dunnett rule.

The Conventional procedure — with no data combination — is a
little worse than the TSE test, and superior to three versions of the
BK combination test !!

Differences in power equate to sample size differences of 4% to 8%.
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Discussion of the six power functions

Variations in performance between the procedures are surprising.

While one BK method improves on the Conventional design, the
others fail to gain any advantage from using Phase 2 data in the
final analysis — but given the practical difficulties involved in a
seamless Phase 2/3 design, a positive benefit is essential.

The TSE method and BK with a weighted inverse normal
combination test and Dunnett test for intersection
hypotheses perform well for vectors θ = (0, 0, 0, δ).

Are the same methods the best choices for other configurations
of treatment means?

Is it possible to quantify the value of including Phase 2 data in
the final analysis, e.g., in terms of an equivalent number of
Phase 3 observations?
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Assessing the benefits of Seamless Phase 2/3 designs

Reference: Hampson & Jennison, Statistics in Medicine, 2015,
hereafter “H&J”.

Hampson & Jennison create a decision theoretic formulation of the
testing problem at the end of a Phase 2/3 trial and search for
optimal decision rules in a variety of scenarios.

They conclude that good all round performance is achieved by

The TSE method,

An inverse normal combination test paired with Dunnett’s
test for intersection hypotheses.

Using Simes’ rule, rather that the Dunnett test, can lead to
inefficiency when some doses have low effect sizes.
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Some comments on Simes’ method

The Simes P-value for intersection hypothesis HI

P
(1)
I = min

j=1,...,m
(mP

(1)
[j] /j).

starts with mP
(1)

[1] from dose i∗ with the largest θ̂
(1)

i , but may then

“borrow strength” from other doses.

H&J show that, because of the correlation between the θ̂
(1)

i s, it is

optimal to place negative weights on the θ̂
(1)

i , i 6= i∗. when testing
θ = (0, 0, 0, 0) vs θ = (0, 0, 0, δ).

H&J also show the TSE test is exactly optimal if the vector of
treatment effects is of the form θ = (δ/2, δ/2, δ/2, δ).

Since the TSE test does not involve θ̂
(1)

i , i 6= i∗, we see that for
“borrowing strength” to help, the second highest treatment effect
must be at least half the maximum effect.
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Value of Phase 2 data in an inferentially seamless design

H&J compare the power of efficient seamless designs with that of
a “conventional” design with a higher Phase 3 sample size.

Let m1 be the number of subjects treated at each dose in Phase 2.

Let γ be such that, in order to attain the power of the seamless
design, a conventional design needs γ m1 more observations on
each of the selected treatment arm and the control arm.

A rule of thumb

In a variety of examples, H&J found γ to lie between 0.2 and 1.0.

In the most plausible scenarios, γ ≈ 0.5, so the Phase 2 data on
dose i∗ and the control are worth about half their face value.

This advantage could justify the extra effort in running a seamless
Phase 2/3 trial — particularly when there are low numbers of
patients with the indication in question.
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Further topics for Phase 2/3 trials

In variations and extensions of the preceding methods:

More than one treatment may be carried forward to Phase 3,

Sequential monitoring could result in early elimination of
inferior treatments in Phase 2, or an early Phase 3 decision,

In Phase 2, one may select and fit a dose-response model,

An over-arching approach may be followed to optimise the
Phase 2 and Phase 3 trials together.

See:

TSE and H&J for the optimal division of sample size between
Phases 2 and 3.

Antonijevic et al., Ch. 6 of Optimization of Pharmaceutical
R&D Programs and Portfolios (2015).

Robbie Peck, University of Bath PhD Thesis.
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Conclusions: Seamless Phase 2/3 designs

• The principles of Closed Testing Procedures and Combination
Tests can be applied to create Seamless Phase 2/3 designs
that protect the familywise error rate.

• Investigations have shown that using a Dunnett test for
intersection hypotheses along with a weighted inverse normal
combination test produces designs with robust efficiency
across a variety of forms of the treatment effect vector.

• There are tangible benefits from including Phase 2 data in the
final analysis: typically, the Phase 2 data on the selected dose
and the control are worth about half their face value.

• Within this general framework, there is scope for further
development and optimisation of Phase 2/3 designs.
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Part 6. Multi-armed group sequential trials

6.1. Multi-armed multi-stage (MAMS) designs

Overall plan of MAMS trials

Closed Testing Procedures using Lehmacher-Wassmer
multi-stage combination tests

An illustrative example

6.2. A survival trial with treatment selection

Overall plan of the trial

Avoiding error rate inflation in an adaptive trial with
survival data

Choosing an adaptive design and assessing its benefits
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6.1. Multi-armed multi-stage (MAMS) designs

One may wish to test several new treatments in a Phase 3 trial.

Perhaps there are variants of a new drug treatment to compare:

Should the drug be administered orally or subcutaneously?

Is the high dose necessary for efficacy?

Should the new drug be used with drug A, B or C in a
combination therapy?

We shall consider a study in which Treatments 1 to J are
compared with a control.

Denote the treatment effects by θj , j = 1, . . . , J .

Then, we wish to test the null hypotheses Hj : θ ≤ 0 against
one-sided alternatives θj > 0.

We assume the familywise type I error rate must be at most α.
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Multi-armed multi-stage (MAMS) designs

With treatment effects θj , j = 1, . . . , J , let θ = (θ1, . . . , θJ).

We assume familywise type error rate is to be protected at level α,
so for all θ = (θ1, . . . , θJ)

Pθ{Reject Hj for some j with θj ≤ 0} ≤ α.

(Some forms of multi-arm trial may not require this.)

We conduct the trial in stages, indexed by k = 1 to K.

At each analysis, we may drop poorly performing treatments or
reach a positive conclusion about a treatment that performs well.

Having rejected Hj : θj < 0 for one treatment, we could stop the
whole trial and recommend Treatment j.

However, it may be of interest to see if other treatments are
superior to the control, especially if they have a lower dose or
comprise a more easily tolerated combination therapy.
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Multi-armed multi-stage (MAMS) designs

Before the trial commences, the sponsor will explain the goals of
the trial to the Data Monitoring Committee (DMC) and set out
guidelines for:

When to drop a poorly performing treatment,

When to declare a positive result for an effective treatment,

When to terminate the whole study.

At its meetings, the DMC will consider all available information on
efficacy and safety endpoints.

While clear guidelines are to be encouraged, it may be unrealistic
to suppose formal stopping rules can anticipate every eventuality.

It is likely that the DMC will need to exercise judgement in
applying the guidelines.

Therefore, we shall consider flexible, adaptive procedures.
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Closed Testing Procedures for MAMS trials

The data

In each Stage k = 1, . . . ,K, denote the estimated effect of

Treatment j vs control, based only on Stage k data, by θ̂
(k)

j .

Suppose θ̂
(k)

j has variance V
(k)
j , then the associated Z-statistic is

Z
(k)
j = θ̂

(k)

j /
√
{V (k)

j }.

We shall apply a Closed Testing Procedure to deal with the
multiple hypotheses H1, . . . ,HJ .

This requires a test for each intersection hypothesis HI where
I ⊆ {1, . . . , J} — and these tests are to be conducted group
sequentially.

We shall apply a Lehmacher-Wassmer multi-stage combination test
to each HI .
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A Lehmacher-Wassmer K-stage test of HI

We use Lehmacher-Wassmer multi-stage combination tests to

(i) Combine data across stages,

(ii) Allow early stopping for negative or positive outcomes.

We assume Stage k data yield the statistic Z
(k)
I where, under HI ,

Z
(k)
I ∼ N(0, 1) or Z

(k)
I is stochastically smaller than this.

We first specify weights w1, . . . , wK .

Then at analysis k, we form the cumulative statistic

ZI,k = (w1Z
(1)
I + . . .+ wkZ

(k)
I ) / (w2

1 + . . .+ w2
k)

1/2.

Under HI , the sequence {ZI,k} follows the “canonical joint
distribution” with θ = 0 and information Ik ∝ w2

1 + . . .+ w2
k,

or {ZI,k} is stochastically smaller than this.
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A Lehmacher-Wassmer K-stage test of HI

Under HI , the sequence {ZI,k} has the canonical distribution:

(ZI,1, . . . , ZI,K) is multivariate normal,

ZI,k ∼ N(0, 1), k = 1, . . . ,K,

Cov(ZI,k1 , ZI,k2)=
√

(w2
1 + . . .+ w2

k1
)/(w2

1 + . . .+ w2
k2

), k1 < k2

or {ZI,k} is stochastically smaller than this.

Let bk, k = 1, . . . ,K, be the upper boundary points of a GST with
type I error rate α when the cumulative Z-statistics have the
above distribution.

Then, the Lehmacher-Wassmer test rejects HI at stage k if

ZI,k > bk.

One can add a non-binding futility boundary to this GST but, for
simplicity, we shall not pursue this option here.
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A Lehmacher-Wassmer K-stage test of HI

Example

Consider a 4-stage multi-arm trial.

Suppose we anticipate the same group sizes per treatment arm in
each stage, and so define equal weights

w1 = w2 = w3 = w4 = 1.

If treatments are dropped and group sizes per treatment arm
increase in later stages, higher weights in these stages would be
appropriate. However, the weights must be fixed before the
trial commences.

We shall use a ρ-family error spending test with ρ = 2, type I error
rate α, with no futility boundary.

This has upper boundary points

b1 = 2.96, b2 = 2.56, b3 = 2.30, b4 = 2.09.
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Testing an intersection hypothesis HI in Stage k

For each Treatment j, we have the Z-statistic based on Stage k
data only,

Z
(k)
j = θ̂

(k)

j /
√
{V (k)

j }.

Suppose the set I has m elements and let z∗ be the maximum of

the observed values of the Z
(k)
j , j ∈ I.

The P-value for testing HI using Dunnett’s test is

P
(k)
I = P{max

j∈I
Zj > z∗},

when (Z1, . . . , Zm) is multivariate normal with each Zj ∼ N(0, 1)
and Cov(Zj , Zj′) = 0.5, j 6= j′.

The associated Z-statistic is

Z
(k)
I = Φ−1(1− P (k)

I )

and, by construction, Z
(k)
I ∼ N(0, 1) if θj = 0 for all j ∈ I.
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Example: A MAMS trial design

Suppose 3 treatments, low, medium and high doses of a new drug,
are to be compared against a control in a 4-stage trial.

We specify:

A Closed Testing Procedure,

Dunnett’s method to be used to create stage-wise Z-values
for intersection hypotheses,

Lehmacher-Wassmer, 4-stage combination tests for each HI

based on ρ-family error spending tests with

ρ = 2, α = 0.025, no futility boundary.

The null hypothesis Hj : θj ≤ 0 can be rejected globally if the
Lehmacher-Wassmer tests reject each HI with j ∈ I.

Each treatment may be discontinued at any point for positive or
negative reasons.
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Example: Stage 1 data

Suppose the first stage produces Z-statistics Z
(1)
1 , Z

(1)
2 , and Z

(1)
3

for the three treatments, as shown below.

Treatment j Z
(1)
j

1 1.26

2 1.84

3 2.76

We shall apply Dunnett’s rule to find the Z-value Z
(1)
I for each

intersection hypothesis HI .

At Stage 1, the Z
(1)
I are also the cumulative Z-values, ZI,1, that

appear in the Lehmacher-Wassmer test.

Since the Lehmacher-Wassmer testing boundary has

b1 = 2.96, b2 = 2.56, b3 = 2.30, b4 = 2.09,

we shall need to see ZI,1 = Z
(1)
I ≥ 2.96 to reject HI at this stage.
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Example: Stage 1 data

Applying Dunnett’s rule, Z-values for intersection hypotheses are

Hypothesis HI Z
(1)
I

H{1} 1.26
H{2} 1.84
H{3} 2.76

H{1,2} 1.56
H{1,3} 2.54
H{2,3} 2.54

H{1,2,3} 2.41

As already noted, the Z
(1)
I are also the cumulative Z-values, ZI,1,

that appear in the Lehmacher-Wassmer test.

As each ZI,1 = Z
(1)
I < b1 = 2.96, no hypotheses are rejected here.

We suppose the trial continues with all 3 treatments still active.
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Example: Stage 2 data

Results in Stage 2 (only) produce the Z-statistics Z
(2)
1 , Z

(2)
2 and

Z
(2)
3 shown below.

Treatment j Z
(2)
j

1 −0.45

2 2.21

3 0.71

From these, we compute the Dunnett Z-values, Z
(2)
I , for each

intersection hypothesis HI .

Then, to apply the Lehmacher-Wassmer test, we calculate the
cumulative Z-value for each HI

ZI,2 =
Z

(1)
I + Z

(2)
I√

2
.
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Example: Results after Stages 1 and 2

HI Z
(1)
I = ZI,1 Z

(2)
I ZI,2

H{1} 1.26 −0.45 0.57
H{2} 1.84 2.21 2.86
H{3} 2.76 0.71 2.45

H{1,2} 1.56 1.96 2.49
H{1,3} 2.54 0.34 2.04
H{2,3} 2.54 1.96 3.18

H{1,2,3} 2.41 1.81 2.98

The Lehmacher-Wassmer tests reject intersection hypotheses H{2},
H{2,3} and H{1,2,3} since they have ZI,2 > b2 = 2.56.

However, H{1,2} is not rejected so the Closed Testing Procedure
does not allow global rejection of H2.

Suppose the high dose Treatment 3 is dropped for safety reasons,
so the trial continues with Treatments 1 and 2 and the control.
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Example: Stage 3 data

Results in Stage 3 (only) produce Z-statistics Z
(3)
1 and Z

(3)
2

Treatment j Z
(3)
j

1 0.90

2 1.41

3 —

In computing the Dunnett Z-value for an intersection hypothesis

HI with 3 ∈ I, we set Z
(3)
I equal to Z

(3)
I′ where I ′ = I \ {3}.

This cannot be done for I = {3} — but that is not a problem as
we are no longer interested in the global test of H3.

The cumulative Z-value for each HI after the first 3 stages is

ZI,3 =
Z

(1)
I + Z

(2)
I + Z

(3)
I√

3
.
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Example: Results after Stages 1, 2 and 3

HI Z
(1)
I = ZI,1 Z

(2)
I ZI,2 Z

(3)
I ZI,3

H{1} 1.26 −0.45 0.57 0.90 0.99
H{2} 1.84 2.21 2.86 1.41 3.15
H{3} 2.76 0.71 2.45 — —

H{1,2} 1.56 1.96 2.49 1.10 2.67
H{1,3} 2.54 0.34 2.04 0.90 2.19
H{2,3} 2.54 1.96 3.18 1.41 3.41

H{1,2,3} 2.41 1.81 2.98 1.10 3.07

The Lehmacher-Wassmer tests reject intersection hypotheses H{2},
H{1,2}, H{2,3} and H{1,2,3} since they have ZI,3 > b3 = 2.30.

Thus, H2 can be rejected globally and Treatment 2 declared
superior to the control.

Suppose Treatment 2 is discontinued at this point and the trial
continues with the low dose Treatment 1 and the control.
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Example: Stage 4 data

Results in Stage 4 (only) produce the single Z-statistic Z
(4)
1 .

Treatment j Z
(4)
j

1 2.07

2 —

3 —

We shall use Z
(4)
1 to create Z-statistics for intersection hypotheses

HI involving Treatment 1.

We can then conduct the final analysis of the Lehmacher-Wassmer
tests of these hypotheses using the test statistics

ZI,4 =
Z

(1)
I + Z

(2)
I + Z

(3)
I + Z

(4)
I

2
.
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Example: Results after Stages 1, 2, 3 and 4

HI Z
(1)
I Z

(2)
I ZI,2 Z

(3)
I ZI,3 Z

(4)
I ZI,4

H{1} 1.26 −0.45 0.57 0.90 0.99 2.07 1.89
H{2} 1.84 2.21 2.86 1.41 3.15 — —
H{3} 2.76 0.71 2.45 — — — —

H{1,2} 1.56 1.96 2.49 1.10 2.67 2.07 3.35
H{1,3} 2.54 0.34 2.04 0.90 2.19 2.07 2.93
H{2,3} 2.54 1.96 3.18 1.41 3.41 — —

H{1,2,3} 2.41 1.81 2.98 1.10 3.07 2.07 3.69

The Lehmacher-Wassmer tests reject intersection hypotheses
H{1,2}, H{1,3} and H{1,2,3} since they have ZI,4 > b4 = 2.09.

However, H{1} is not rejected, so the Closed Testing Procedure
does not allow global rejection of H1.
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Example: Conclusions

The conclusions from the study are that:

The medium dose, Treatment 2, was shown to be superior
to the control in a testing procedure with familywise type I
error rate α = 0.025,

The low dose, Treatment 1, was not found to be superior to
the control,

The high dose, Treatment 3, was found to have safety
problems and was dropped half way through the study.
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6.2 A survival trial with treatment selection

Consider a Phase 3 trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing

Experimental Treatment 2: Slower dosing

Control treatment

The primary endpoint is Overall Survival (OS).

At an interim analysis, information on OS, Progression Free
Survival (PFS), PK measurements and safety will be used to
choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the
selected treatment and the control.
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Overall plan of the trial

Interim

analysis

Final

analysis

Stage 1
cohort

-
�
�3

Q
Qs

Exp. Treatment 1

Exp. Treatment 2

Control

- Follow up

PFS & OS

-
Further

follow up

of OS

Stage 2
cohort

��1

PPq

Selected
Exp. Treatment

Control

- Follow up

of OS

At the final analysis, we test the null hypothesis that OS on the
selected treatment is no better than OS on the control treatment.
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Protecting the type I error rate

We shall assume a proportional hazards model for OS with

λ1 = Hazard ratio, Control vs Exp Treatment 1

λ2 = Hazard ratio, Control vs Exp Treatment 2

θ1 = log(λ1), θ2 = log(λ2).

We test null hypotheses

H1: θ1 ≤ 0 vs θ1 > 0 (Exp Treatment 1 superior to control),

H2: θ2 ≤ 0 vs θ2 > 0 (Exp Treatment 2 superior to control).

In order to control the “familywise error rate”, we require

P(θ1,θ2){Reject any true null hypothesis} ≤ α

for all (θ1, θ2).
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A closed testing procedure

Define level α tests of

H1: θ1 ≤ 0,

H2: θ2 ≤ 0

and a level α test of the intersection hypothesis

H12 = H1 ∩H2: θ1 ≤ 0 and θ2 ≤ 0.

Then:

Reject H1 overall if the above tests reject H1 and H12,

Reject H2 overall if the above tests reject H2 and H12.

The requirement to reject H12 compensates for testing multiple
hypotheses and the “selection bias” in choosing the treatment to
focus on in Stage 2.
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Combining data across stages

Consider testing a generic null hypothesis H0: θ ≤ 0 against θ > 0.

Suppose Stage 1 data produce Z(1) where

Z(1) ∼ N(0, 1) if θ = 0.

On adaptation, Stage 2 data yield Z(2) conditionally distributed as

Z(2) ∼ N(0, 1) if θ = 0,

while Z(1) and Z(2) are stochastically smaller if θ < 0.

Weighted inverse normal Combination Test

With pre-specified weights w1 and w2 satisfying w2
1 + w2

2 = 1,

Z = w1 Z
(1) + w2 Z

(2) ∼ N(0, 1) if θ = 0,

and Z is stochastically smaller than N(0, 1) if θ < 0.

So, for a level α test, we reject H0 if Z > Φ−1(1− α).
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Applying a combination test to survival data

For now, consider Experimental Treatment 1 vs Control.

-
Start of
study

Calendar
time

Interim
analysis

Final
analysis

Overall
Survival

-�

Stage 1 cohort

-�

Stage 2 cohort

•
•

◦
•

◦
•

◦
•

◦

Key: Subjects randomised to Exp Treatment 1
Subjects randomised to Control

• Death observed
◦ Censored observation
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Properties of log-rank tests

Comparing Experimental Treatment 1 vs Control, define

S1 = Unstandardised log-rank statistic at interim analysis,

I1 = Information for θ1 at interim analysis ≈ (Number of deaths)/4

S2 = Unstandardised log-rank statistic at final analysis,

I2 = Information for θ1 at final analysis ≈ (Number of deaths)/4

Here, “Number of deaths” refers to the total number of deaths on
Experimental Treatment 1 and Control arms only.

Then, approximately,

S1 ∼ N(I1 θ1, I1),

S2 − S1 ∼ N({I2 − I1} θ1, {I2 − I1})
and S1 and (S2 − S1) are independent (independent increments).

Reference: Tsiatis (Biometrika, 1981).
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A combination test for survival data

We create Z statistics

Based on data at the interim analysis:

Z(1) =
S1√
I1
,

Based on data accrued between the interim and final analyses:

Z(2) =
S2 − S1√
I2 − I1

.

If θ1 = 0, Z(1) ∼ N(0, 1) and Z(2) ∼ N(0, 1) are independent.

If θ1 < 0, Z(1) and Z(2) are stochastically smaller than this.

So, we can use Z = w1 Z
(1) + w2 Z

(2) in an inverse normal

combination test of H1: θ1 ≤ 0.
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A combination test for survival data: Caution!

The above distribution theory for logrank statistics of a single
comparison requires

Z(2) =
S2 − S1√
I2 − I1

∼ N(0, 1) under θ1 = 0,

regardless of decisions taken at the interim analysis.

Bauer & Posch (Statistics in Medicine, 2004) note this implies that
the conduct of the second part of the trial should not depend on
the prognosis of Stage 1 patients at the interim analysis.

Suppose prognoses are better for patients on Exp Treatment 1
than for those on Control, and the Stage 2 cohort size is reduced
while follow up of Stage 1 patients is extended: then, the
distribution of Z(2) could be biased upwards.

Our example has another potential source of bias, depending on
how the Stage 2 statistic for testing H12 is defined.
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Analysing an adaptive survival trial

In applying a Closed Testing Procedure, we require level α tests of

H1: θ1 ≤ 0,

H2: θ2 ≤ 0,

H12: θ1 ≤ 0 and θ2 ≤ 0.

Combination tests for these hypotheses are formed from:

Stage 1 data Stage 2 data

H1 Z
(1)
1 Z

(2)
1

H2 Z
(1)
2 Z

(2)
2

H12 Z
(1)
12 Z

(2)
12

The question is how should we define Z
(1)
1 , Z

(2)
1 , etc?
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Analysing an adaptive survival trial

A natural choice is to:

Base Z
(1)
1 , Z

(1)
2 and Z

(1)
12 on data at the interim analysis,

Base Z
(2)
1 , Z

(2)
2 and Z

(2)
12 on the additional information

accruing between interim and final analyses.

We could take Z
(1)
1 and Z

(1)
2 to be standardised log-rank statistics,

and Z
(2)
1 and Z

(2)
2 standardised increments between analyses.

For intersection hypotheses: Z
(1)
12 is formed from Z

(1)
1 and Z

(1)
2 ,

while Z
(2)
12 = Z

(2)
j , where j is the selected treatment.

However, treatment j is selected because it has better PFS
outcomes at the interim analyses, so it is likely that future OS for
these patients will also be better.

This approach would lead to a bias in the null distribution of Z
(2)
12 .
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The method of Jenkins, Stone & Jennison (2011)

If we base a combination test on the two parts of the data accrued
before and after the interim analysis, bias can result:

Z(1) Z(2)

Stage 1 Overall survival Overall survival
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
cohort (during Stage 2)

Instead, we divide the data into the parts from the two cohorts:

Stage 1 Overall survival Overall survival Z(1)

cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival Z(2)

cohort (during Stage 2)
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Partitioning data for a combination test

To avoid bias: All patients in the Stage 1 cohort are followed for
overall survival up to a fixed time, shortly before the final analysis.

“Stage 1” statistics are based on Stage 1 cohort’s final OS data

Z
(1)
1 from log-rank test of Exp Tr 1 vs Control

Z
(1)
2 from log-rank test of Exp Tr 2 vs Control

Z
(1)
12 from pooled log-rank test, or a Simes or Dunnett test.

“Stage 2” statistics are based on OS data for the Stage 2 cohort

If Exp Treatment 1 is selected:

Z
(2)
1 from log-rank test of Exp Tr 1 vs Control, Z

(2)
12 = Z

(2)
1

If Exp Treatment 2 is selected:

Z
(2)
2 from log-rank test of Exp Tr 2 vs Control, Z

(2)
12 = Z

(2)
2 .
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Partitioning data for a combination test

Discussion

Jenkins, Stone & Jennison (2011) introduced the proposed method
in a design where a choice is made between testing for an effect in
the full population or a sub-population.

They stipulated that the amount of follow up for the Stage 1
cohort should be fixed at the outset to avoid any risk of inflating
the type I error rate.

Some adaptive designs allow an early decision based on summaries
of “Stage 1” data at an interim analysis.

In our three-treatment design, the statistics Z
(1)
1 , Z

(1)
2 and Z

(1)
12

are not known at the time of the interim analysis, so we cannot
define a formal stopping rule.

However, with only a little OS data available at the interim
analysis, this is not a serious limitation.
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Choosing an adaptive design and assessing its benefits

We compare the adaptive design with a non-adaptive trial in which
randomisation is to both experimental treatments and control
throughout the trial:

Final
analysis

All
patients

-
�
�3

Q
Qs

Exp. Treatment 1

Exp. Treatment 2

Control

- Follow up

of OS

A closed testing procedure is used to control familywise error rate.

When the total numbers of patients and lengths of follow-up are
the same in adaptive and non-adaptive designs,

Does the adaptive design provide higher power?

Are there other advantages?
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Assessing the adaptive design: Model assumptions

Overall Survival
Log hazard ratio

Exp Treatment 1 vs control θ1

Exp Treatment 2 vs control θ2

Logrank statistics are correlated due to the common control arm.

Progression Free Survival
Log hazard ratio

Exp Treatment 1 vs control ψ1

Exp Treatment 2 vs control ψ2

Denote correlation between logrank statistics for OS and PFS by ρ.

In fact, hazard rates cannot be proportional for both endpoints.

However, it is the implications for the joint distribution of logrank
statistics that matter, and it is convenient to describe these as if
from two proportional hazards models.
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Assessing the adaptive design: Model assumptions

Log hazard ratios for OS: θ1, θ2.

Log hazard ratios for PFS: ψ1, ψ2.

We suppose logrank statistics are distributed as if

ψ1 = γ × θ1 and ψ2 = γ × θ2

Final number of OS events for Stage 1 cohort = 300 (over 3
treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3
treatment arms)

Number of PFS events at interim analysis = λ× 300.

When the log hazard ratio is θ, the standardised logrank statistic

based on d observed events is, approximately, N(θ
√
d/4, 1).
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Testing the intersection hypothesis H12

We have null hypotheses H1: θ1 ≤ 0 and H2: θ2 ≤ 0.

In the closed testing procedure, we must also test

H12 = H1 ∩H2 : θ1 ≤ 0 and θ2 ≤ 0.

We could test H12 by pooling the Exp Trt 1 and Exp Trt 2
patients and carrying out a logrank test vs the Control group.

Alternatively we could use a Simes test or a Dunnett test.

Simes’ test:

Given observed values p
(1)
1 and p

(1)
2 of P

(1)
1 and P

(1)
2 in Stage 1,

Simes’ test of H12 yields the P-value

P
(1)
12 = min ( 2 min(p

(1)
1 , p

(1)
2 ), max(p

(1)
1 , p

(1)
2 ) ).

Simes’ test protects type I error conservatively when P
(1)
1 and P

(1)
2

are independent or positively associated.
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Dunnett’s test of an intersection hypothesis

Dunnett’s test for comparisons with a common control

Suppose Z
(1)
1 and Z

(1)
2 are the Stage 1 Z-values for logrank tests

of Exp Trt 1 vs control and Exp Trt 2 vs Control.

If z
(1)
1 and z

(1)
2 are the observed values of Z

(1)
1 and Z

(1)
2 , the

Dunnett test of H12 yields the P-value

P
(1)
12 = P (max(Z

(1)
1 , Z

(1)
2 ) ≥ max(z

(1)
1 , z

(1)
2 ))

where (Z
(1)
1 , Z

(1)
2 ) is bivariate normal with Z

(1)
1 ∼ N(0, 1),

Z
(1)
2 ∼ N(0, 1) and Cov(Z

(1)
1 , Z

(1)
2 ) = 0.5.

We shall see from comparisons of different methods that the
Dunnett test of the intersection hypothesis leads to the most
efficient versions of both adaptive and non-adaptive designs.
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Comparing adaptive and non-adaptive trial designs

With selected values of ψ1, θ1, ψ2, θ2 and ρ, we simulate logrank
statistics from their large sample distributions.

For the adaptive design, we define

P (1) = P (Select Treatment 1 and Reject H1 overall)

P (2) = P (Select Treatment 2 and Reject H2 overall)

For the non-adaptive design, we set

P (1) = P (θ̂1 > θ̂2 and H1 is rejected overall)

P (2) = P (θ̂2 > θ̂1 and H2 is rejected overall)

Hence, we define the overall expected “Gain” or utility measure

E(Gain) = θ1 × P (1) + θ2 × P (2).
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Comparing tests of the intersection hypothesis

Intersection tests produce Z
(1)
12 in an adaptive trial design with

ψ1 = θ1, ψ2 = θ2, λ = 1, ρ = 0.6, α = 0.025.

P (1) E(Gain)

θ1 θ2 Pooled Simes Dunnett Pooled Simes Dunnett

0.3 0.0 0.77 0.85 0.86 0.232 0.254 0.259

0.3 0.1 0.78 0.81 0.82 0.238 0.245 0.247

0.3 0.2 0.68 0.68 0.69 0.238 0.237 0.238

0.3 0.25 0.58 0.58 0.58 0.250 0.249 0.249

0.3 0.295 0.48 0.47 0.47 0.275 0.274 0.274

All simulation results are based on 1,000,000 replicates.

The Dunnett test has the highest power. Unlike the pooled test, it
is consonant (usually) with individual tests of H1 and H2.
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Comparing adaptive and non-adaptive trial designs

We compare designs using a Dunnett test for H12 with

ψ1 = θ1, ψ2 = θ2, λ = 1, ρ = 0.6, α = 0.025.

Non-adaptive Adaptive

θ1 θ2 P (1) P (2) E(Gain) P (1) P (2) E(Gain)

0.3 0.0 0.78 0.00 0.235 0.86 0.00 0.259

0.3 0.1 0.78 0.01 0.234 0.82 0.02 0.247

0.3 0.2 0.70 0.11 0.234 0.69 0.16 0.238

0.3 0.25 0.60 0.26 0.244 0.58 0.30 0.249

0.3 0.295 0.47 0.43 0.267 0.47 0.44 0.274

Here, λ = 1 implies there are 300 PFS events at the interim analysis.

The adaptive design has higher P (1) when θ1 is well above θ2.

With θ1 and θ2 closer, the adaptive design still has higher E(Gain).
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Comparing adaptive and non-adaptive trial designs

The adaptive design can only succeed if there is adequate
information to select the correct treatment at the interim analysis:

Treatment effects on PFS should be be reliable indicators of
treatment effects on OS,

There must be good information on PFS at the interim analysis.

We have investigated varying the parameters γ and λ where

ψ1 = γ × θ1, ψ2 = γ × θ2, with θ1 = 0.3 and θ2 = 0.1

Final number of OS events for Stage 1 cohort = 300 (over 3 arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3 arms)

Number of PFS events at interim analysis = λ× 300.

NB It is quite plausible that γ should be greater than 1, i.e., a
larger treatment effect on PFS than on OS.
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Comparing adaptive and non-adaptive trial designs

We compare designs with θ1 = 0.3, θ2 = 0.1, ρ = 0.6, α = 0.025,

PFS log hazard ratios: ψ1 = γ θ1, ψ2 = γ θ2,

Number of PFS events at interim analysis = λ× 300.

Non-adaptive Adaptive

γ λ P (1) P (2) E(Gain) P (1) P (2) E(Gain)

1.5 1.2 0.88 0.00 0.264

1.2 1.1 0.85 0.01 0.256

1.0 1.0 0.78 0.01 0.234 0.82 0.02 0.247

0.9 0.9 for all γ and λ 0.78 0.03 0.238

0.8 0.8 (PFS is not used) 0.74 0.04 0.225

0.7 0.7 0.68 0.05 0.208

Adaptation works well when there is enough PFS information for
treatment selection at the interim analysis.
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Related work

1. Friede et al. (Statistics in Medicine, 2011) consider a seamless
phase II/III trial design with treatment selection based on both
short-term and long-term responses.

They give an example of a trial comparing treatments for multiple
sclerosis. When the treatment selection decision is made, only a
short-term response is available for some subjects but these
patients will go on to provide a long-term response later.

As for a survival endpoint, follow-up of patients on the selected
treatment is likely to produce results that are biased towards a
positive treatment effect, since the treatment selection decision
was based on promising short-term response data.

Friede et al. follow a similar approach to Jenkins, Stone &
Jennison (2011) and apply a combination test to the long-term
response data from the cohorts of patients admitted before and
after the interim decision point.
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Related work

2. Irle & Schäfer (JASA, 2012) propose similar adaptive designs
for survival data.

Changes to the design and critical values for test statistics preserve
the conditional probability of rejecting a null hypothesis.

As the “Conditional Probability of Rejection” principle is related to
combination tests, the method has much in common with that of
Jenkins, Stone & Jennison (2011).

Irle & Schäfer’s method imposes the same requirement of a fixed
length of follow-up for “Cohort 1” patients.

Determining the conditional probability of a future event can be
problematic, since the final information level (in a log-rank statistic,
say) is not known at the time this probability is calculated.

We recommend our combination test approach as simpler to
explain and easier to implement.
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Conclusions about the benefits of the adaptive design

• The adaptive design offers the chance to select the better
treatment and focus on this in the second stage of the trial.

• Overall, adaptation is beneficial as long as there is sufficient
information to make a reliable treatment selection decision.

• Other evidence may be used in reaching this decision:

Safety data

Pharmacokinetic data

Overall survival

• In addition to reaching a final decision, both non-adaptive and
adaptive trials compare the two forms of treatment: the
conclusions from this comparison may be more broadly useful.
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Recapitulation: Adaptive clinical trial designs

• It is desirable to adapt a clinical trial design as information
becomes available on parameters that were initially unknown.

• Methods are available to create adaptive designs that will protect
the overall type I error rate.

• Combination tests allow results from different stages of the trial
to be merged.

• Closed Testing Procedures allow tests of multiple hypotheses, or
of a single hypothesis selected in a data-dependent manner.

• It should not be assumed that introducing adaptation will
automatically make a trial design more efficient.

• Critical appraisal of trial designs is crucial and, where feasible, it
is advisable to define an objective function and optimise for this
criterion within a chosen class of designs.
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