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Conditional effects

» When Z is low dimensional (e.g. binary or categorical with
few levels), we may control for Z by stratification
» conceptually simple
> computationally simple
> does not require any modeling assumptions
» Stratification gives one causal effect for each stratum -
conditional (subpopulation) effects

> e.g. stratification on sex gives the effect for men and
women separately

Exchangeability

> |f we have exchangeability
(Yo, Y1) I X,

then the crude association is a causal effect

> In observational studies, we typically don’t have
exchangeability because of confounding

» If we have conditional exchangeability, given Z,
(Y07 Y1)HX ‘ Za

then controlling for Z gives a causal effect

Marginal effects

» Often, it may be desirable to estimate the causal effect for
the whole population - a marginal causal effect
> easier to interpret and communicate one marginal effect
than several conditional effects
» randomized trials give marginal effects, and we may want to
make results from observational studies comparable
» we may want to consider future interventions to the whole
population, rather than to subgroups
» We will consider two methods for estimation of marginal
effects
> standardization
> inverse probability weighting
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Example (recapitulation)

X=0
X =1

» Assume conditional exchangeability, given Z, and compute
the conditional causal risk ratio, given Z, for Z =1 and
Z=0.

» Where in the computation do you use the assumption of
exchangeability ?



Solution

X=0
X =1
Conditional causal risk ratio, given Z = 0:

p(Ys=1Z=0)
p(Y; =1|Z=0) {(Yo, Y1) L1 X|Z}

p(Yi=1X=1,Z=0) p(Y=1X=1,Z=0)

p(Yo=1X=0,Z2=0) p(Y=1X=0,Z2=0)
_ 20/200 _
- 30/300

Solution

> Given Z = 0, the conditional causal risk ratio is equal to 1
(no effect)
» Given Z = 1, the conditional causal risk ratio is equal to 2

» Effect modification by (interaction with) Z

Solution

X=0
X =1

Conditional causal risk ratio, given Z = 1:

p(Yi=1|Z=1)
p(Yo=1Z=1)
p(Yi=1X=1,2=1) p(Y=1X=1,Z=1)

={(Yo, Y9) I X|Z}

p(Yo=1X=0,Z2=1) p(Y=1X=0,Z2=1)
~240/300
- 80/200

The standardization formula

> |If we have conditional exchangeability, given Z, then
p(Yx = 1) can be computed with the standardization
formula

p(Yx=1) =" p(Y = 11X = x, 2)p(2)
V4

» Special case; binary Z:

p(Yx=1) = p(Y =1X=x,Z=0)p(Z=0)
+ p(Y=1X=x,Z=1)p(Z=1)



Proof

> Law of total probability:

p(Ye=1)=>_p(Yx=12)p(2)
V4

» Conditional exchangeability, given Z:
> p(Yx=112)p(Z) =) p(Yx =1|X = x,2)p(2Z)
z z

» Definition of potential outcomes:

> op(Ya=11X=x,2)p(2) = _p(Y =1|X = x,2)p(Z)
Z Z

Solution

X=0
X =1

(Yo =1) = {(Yo, ¥)IIX|Z} = 3 p(Y = 11X = 0,2)p(2)
V4

= 30/300 x500/1000+ 80/200 x500/1000 = 0.25
S—— S——— SN—— S———
p(Y=1|X=0,Z=0) p(Z=0) p(Y=1|X=0,Z=1) p(Z=1)
p(Yi =1)={(Yo, YOI X|Z} = p(Y =1|X =1,2)p(2)
z

= 20/200 x500/1000+ 240/300 x500/1000 = 0.45
—— —_——— —— —_———
p(Y;=1) 045

p(Yo=1) 025 '8

Example

» Assume conditional exchangeability, given Z, and compute
the marginal causal risk ratio

Marginal effect vs. conditional effects

» In our example we had that p(Z =1) =p(Z=0)=0.5
» We observed that

p(Y1=12=0) _ |
p(Yo=1|Z2=0)

plYi=12=1) _ ,
p(Yo=1Z2=1)
p(Yi=1)

1.8
p(Yo=1)

» The marginal effect is not generally equal to the average of
the conditional effects

» which in our example wouldbe 1 x 0.5+2 x 0.5=1.5

> A special case; the marginal causal risk difference is equal
to the average of the conditional causal risk differences



Technical note: non-collapsibility

» The marginal effect is not necessarily equal to average of
the conditional effects - even if these are constant
across levels of Z

> e.g. the causal odds ratio may be equal to 3 for both men
and women, but
> the marginal causal odds ratio may be equal to 2
» This phenomenon is sometimes referred to as
‘non-collapsibility’
» Odds ratios and hazard ratios are non-collapsible, whereas
risk difference and risk ratios are not

An alternative method for marginal effects

» Inverse probability weighting (IPW) is an alternative
method to compute the marginal causal effect

» Without modeling assumptions, IPW gives the same result
as standardization

» IPW may give different results, and may sometimes be
advantageous, when using regression models
> more later

Outline

Estimation without regression models

Inverse probability weighting

Three steps for IPW

> Step 1: for each level of the exposure X and confounders
Z, compute the probability p(X|Z)

> Step 2: assign a weight to each subject /, equal to

1
W =
' op(XilZ)

where X; and Z; are the observed exposure and
confounders levels, respectively for subject i
» for instance, suppose that p(X =1|Z2=1)=0.2
» each subject with (X = 1,Z = 1) is then counted as
1/0.2 = 5 subjects in the analysis, and
> each subjects with (X = 0,Z = 1) is then counted as
1/(1 — 0.2) = 1.25 subjects in the analysis

» Step 3: use p(Y = 1|X = x) in the weighted sample as an
estimate of p(Yx = 1)



Example

X
X

» Step 1: for each level of the exposure X and confounders

Z, compute the probability p(X|Z)

Example

X
X =

» Step 2: assign a weight to each subject i, equal to

W, =
" p(XilZ)

Solution

Solution

300/500 = 0.6
200/500 = 0.4
200/500 = 0.4
300/500 = 0.6

x X

- O



Example

Z=0 Z=1

Y=0 Y=1 Y=0 Y-—1
X=0 450 50 300 200
X=1 450 50 100 400

» Step 3: use p(Y = 1|X = x) in the weighted sample as an
estimate of p(Yx = 1)

Why IPW works

» |PW breaks the association between X and Z

4

AN\

» As a consequence, Z is not a confounder in the weighted
sample

> because a confounder must be associated with the
exposure
» If Z is sufficient for confounding control in the original
sample, then there is no confounding in the weighted
sample

» Thus, in the weighted sample we have exchangeability, so
thatp(Y =1 X=x)=p(Yx=1)

X Y

Solution

50 + 200

~ 450 + 50 + 300 + 200
50 + 400

):450+5o+1oo+4oo

p(Yo=1) = p(Y=1|X=0) =025

=0.45

» Same as with standardization

Example

Y=0 Y=1 Y=0 Y=1
X=0 450 50 300 200
X=1 450 50 100 400

» Verify that X and Z are independent in the weighted
sample



Solution

Y=0 Y=1 Y=0 Y=t
X=0 450 50 300 200
X=1 450 50 100 400

450 + 50

PX=112=0) = Z55750+450 550  °°
4
DX 11Z 1) — 100 + 400

300 + 200 + 100 + 400

> p(X=1Z2=0)=p(X=1]Z=1)so0 Xand Z are
independent

Outline
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Estimation with regression models

Motivating example

> Suppose we carry out an observational study to estimate
the causal effect of AZT on infection risk for AIDS patients

» 1000 subjects enrolled

» Baseline measures:

» CD4 count (Z; counts/ul)
> AZT level (X; ‘0’ for ‘untreated’, ‘1’ for ‘treated’)

»> At end of follow up we measure:
» infection status (Y; ‘1’ for infection, ‘0’ for no infection)



Data (in R) Data (in Stata)

import delimited "aids.txt", delimiter (space)
case (preserve)

> aids <- read.table("aids.txt", header=TRUE) . list in 1/10
> aids[1:10, ]
Z XY e +
1 405 0 1 | Z X Y |
2 4z 00 i o 1
3 30110 Sl o o
4 253 10 3. | 301 1 0
5 307 0 1 4. | 253 1 0
6 392 01 5. | 307 0 1
7 36100 | mmmmm |
8 363 1 0 6. | 392 0 1
9 267 1 0 ;. : igé 2 8
10 355 0 1 o | 267 . 0
10. | 355 0 1
- +
Crude association (in R) Crude association (in Stata)

tabulate X Y, chi2

> chisqg.test (x=aids$X, y=aidss$Y) | Y
X 0 1 | Total
Pearson’s Chi-squared test with Yates’ continuity cor = —-——————————— t—————————— -
0 | 199 299 | 498
data: aids$X and aidsS$Y 1 475 27 | 502
X-squared = 337.47, df = 1, p-value < 2.2e-16¢  ——————————— = e
Total | 674 326 | 1,000

» Interpretation?

Pearson chi2 (1) = 339.9550 Pr = 0.000

» Interpretation?



The role of CD4 count

» Subjects with low CD4 count are more likely to get AZT,
and more likely to get infections

» Arguable, CD4 count is an important confounder that we
need to control for

» But in the data, very few subjects have the same CD4
count

» stratification on CD4 count is not feasible
> Let's use a regression model

Solution
logit{p(Y =1|X,2)} = a+ BX +~Z
a = logit{p(Y=1X=0,Z2=0)}

g [PLY=11X=0,Z=0)
- B\ p(Y=0X=0,Z=0)

B = logit{p(Y =1|X

_ p(Y =1[X
‘l%{myzox

1,2)} — logit{p(Y = 1|X = 0, 2)}
1,2) p(Y =1X =0,2)
1.2 p(Y =0X = 0,2)}

)

v = logit{p(Y =1|X,Z+1)} —logit{p(Y = 1|X, Z)
g {PY =X Z41) p(Y =11X,2)
T (Y =0X,Z+1) p(Y=0X.2)

The logistic regression model

» Since the outcome is binary, it is natural to use the logistic
regression model

logit{p(Y =1|X,2)} =a+ X +~Z

» What are the interpretations of o, 3, and v in terms of
probabilities?

Causal interpretation

logit{p(Y =1|X,2)} =a+ X +~Z

» If we have conditional exchangeability, given Z, then 5 is
the conditional effect of X on Y, given Z, as a log odds
ratio:

e [P =112) p(Yo=112)
p=1 g{p(y1 :0|Z)/p(Yo :0]2)}




Underlying assumptions

logit{p(Y =1|X,2)} =a+ X +~Z

» What assumptions does this model make?

Fundamental limitation of models

> All models are wrong
> but if the model is approximately correct, then our
conclusions are approximately valid
» Assumptions that we make should ideally be justified by
both
> subjects matter knowledge, and
> data (e.g. diagnostic tests)

Solution

logit{p(Y =1|X,2)} = a+ X +~Z

» No effect modification by (interaction with) Z

» The increase in log odds of being infection free, comparing
AZT with no AZT, at a given CD4 count Z, is assumed to be
constant (= ) across levels of Z

> Linear ‘effect’ of CD4 count
> The increase in log odds for being infection free, comparing
CD4 count Z + 1 with CD4 count Z, at a given AZT level X,
is assumed to be constant (= ) across levels Z

Fitting the model (in R)

> fit <- glm(formula=Y~X+Z, family=binomial,
data=aids)
> summary (fit)

Estimate Std. Error z value Pr(>]|z])

(Intercept) 2.251557 0.707103 3.184 0.00145 ==
X -3.513298 0.240476 -14.610 < 2e-16 =xxx%
Z -0.004962 0.001882 -2.637 0.00836 =*x

» Interpretation?



Fitting the model (in Stata)

logistic Y X Z, coef

A closer look at the model (in R)

» Adding an interaction term between X and Z gives:

> fit <- glm(formula=Y~X+Z+Xx*7Z,

Y | Coef Std. Err z
_____________ +_____________________________________________________

X | =-3.513298 .2404814 -14.61

Z | -—-.0049621 .0018817 -2.64

cons | 2.251557 .7071069 3.18

» Interpretation?

A closer look at the model (in Stata)

» Adding an interaction term between X and Z gives:

logistic Y X Z c.X#c.Z, coef

Y | Coef Std. Err z
_____________ +_____________________________________________________
X | 3.309358 1.734994 1.91
Z | -.0015638 .0020491 -0.76
\
c.X#c.Z | —-.0216467 .005667 -3.82
\
cons | .9874315 .766467 1.29

> Interpretation? Is the treatment beneficial or harmful?

family=binomial,

o5 data=aids)
[35% Con > summary (fit)
-3.984633
~.0086502 Estimate Std. Error z value Pr(>|z])
.8656534 (Intercept) 0.987432 0.766467 1.288 0.197645
X 3.309358 1.734947 1.907 0.056460
Z -0.001564 0.002049 -0.763 0.445355
X:Z -0.021647 0.005667 —-3.820 0.000133 #*x*x*
» Interpretation? Is the treatment beneficial or harmful?
What to report? (in R)
Estimate Std. Error z value Pr(>|z])
(Intercept) 0.987432 0.766467 1.288 0.197645
X 3.309358 1.734947 1.907 0.056460
[95% Con: Z -0.001564 0.002049 -0.763 0.445355
X:Z -0.021647 0.005667 —-3.820 0.000133 #*x*x*
-.0911686
—-0055799 » The conditional effect of X on Y, given Z, depends on Z
0327538 > Should we report the main effect together with the
interaction term?
—.5148162 » unintuitive for non-statisticians

» cumbersome if many covariates and interaction terms

» Or perhaps report the effect at the mean/median of Z7?
» not very informative, unless most subjects are close to the

mean/median



What to report? (in Stata)

Y | Coef. Std. Err. z P>|z| [95% Con:
_____________ o
X | 3.309358 1.734994 1.91 0.056 -.0911686

Z | -.0015638 .0020491 -0.76 0.445 -.0055799

c.X#c.z 1 -.0216467 .005667 -3.82 0.000 -.0327538

cons } .9874315 .766467 1.29 0.198 -.5148162

» The conditional effect of X on Y, given Z, depends on Z
» Should we report the main effect together with the
interaction term?
> unintuitive for non-statisticians
> cumbersome if many covariates and interaction terms

» Or perhaps report the effect at the mean/median of Z7?

> not very informative, unless most subjects are close to the
mean/median

The standardization formula

» If we have conditional exchangeability, given Z, then
p(Yx = 1) can be computed with the standardization
formula

p(Yx=1)= 3" p(Y = 11X = x, 2)p(2)
Z

> |f both X and Z are binary, then we can estimate
p(Y =1|X,Z) and p(Z) without modeling assumptions
> non-parametric standardization
> |f X and/or Z is continuous (or categorical with many
levels), non-parametric standardization is not feasible

» But we can use a regression model to estimate p(Yy = 1)

The marginal effect

p(Yo =1)vsp(Y1 =1)

» Arguably more intuitive than main effect + interaction term
» Can always be presented as one single number (e.g. one
log odds ratio) regardless of the number of interactions

» More informative than the effect at the mean/median Z,
since it applies to the whole population

Four steps for regression standardization

> Step 1: fit a regression model for the outcome

> Step 2: replace the factual exposure level with x, for each
individual

» Step 3: estimate p(Y = 1|X = x, Z) for each individual
(i.e. for each observed value of 2)

> Step 4: average these estimates over all individuals to
obtain an estimate of p(Yy = 1)



Code for standardization (in R)

Code for standardization, cont'd (in R)

> #step 1 > #step 1

> fit <- glm(formula=Y~X+Z+X«Z, family=binomial, > fit <- glm(formula=Y~X+Z+X«+Z, family=binomial,
data=aids) data=aids)

> f#step 2 for x=0 > f#step 2 for x=1

> aids0 <- aids > aidsl <- aids

> aids0s$X <- 0 > aidslsX <- 1

> #step 3 for x=0 > #step 3 for x=1

> pred0 <- predict (object=fit, newdata=aidsO, > predl <- predict (object=fit, newdata=aidsl,

type="respons")
#step 4 for x=0
pO0 <- mean (pred0)
PO
1] 0.6083575

— VvV VvV V

Code for standardization (in Stata)

. *step 1

. logistic Y X Z c.X#c.Z
. *step 2 for x=0
. replace X =0

. *step 3 for x=0
. predict pred0

. xstep 2 for x=1
. replace X =1

. *step 3 for x=1
. predict predl

. *step 4

. mean pred0 predl

.6083575 .0005884
.0374899 .0014004

type="respons")
#step 4 for x=1
pl <- mean (predl)
pl
1] 0.03748992

— VvV VvV V

The marginal causal log odds ratio

p(Yo=1)=0.6083575 p(Y; =1)=0.03748992

» We can use the estimates of p(Yp = 1) and p(Y; = 1) to
construct an estimate of the marginal causal log odds ratio

p(Yi=1) , pYo=1) | _
log{1_bgy1:1)/1_'3)(()Y0:1)}——3.68

[95% Conf. Interval] > Interpretation?
6072027 6095122
0347419 0402379



Standard errors

» Standard errors can be obtained with some additional
programming
» sandwich formula
> bootstrap

» Bootstrap:
s.e=0.23

> 95% Cl:

estimate + 1.96 x s.e. = —3.68 + 1.96 x 0.23 = (—3.23, —4.13)

The package stdReg (in R)

\4

library (stdReq)

fit <- glm(formula=Y~X+Z+X*Z, family=binomial,
data=aids)

std.fit <- stdGlm(fit=fit, data=aids, X="X")

summary (std.fit)

\%

VvV VvV

Formula: Y ~ X + Z + X * Z
Family: binomial

Link function: logit
Exposure: X

Estimate Std. Error lower 0.95 upper 0.95
0 0.6084 0.02410 0.5611 0.6556
1 0.0375 0.00729 0.0232 0.0518

Other measures of marginal effects

logit{p(Y = 1|X,2)} = a + BX +vZ + v XZ
B(Yo=1) =0.6083575 p(Y; = 1) = 0.03748992

» Once we have estimated p(Yy = 1) and p(Yo = 1)
separately, we can estimate any measure of effect, e.g.
causal risk difference = p(Y; = 1) — p(Yo = 1) = —0.57

causal risk ratio = p(Y; = 1)/p(Yo = 1) = 0.06

even though the estimates were derived from a logistic
regression model

The package stdReg, contd (in R)

> summary (object=std.fit, transform="logit",
contrast="difference", reference=0)

Formula: ¥ ~ X + Z2 + X x Z
Family: binomial
Link function: logit

Exposure: X

Transform: logit
Reference level: X =0
Contrast: difference

Estimate Std. Error lower 0.95 upper 0.95
0 0.00 0.000 0.00 0.00
1 -3.69 0.226 -4.13 -3.24



References for stdreg The margins command (in Stata)

Sj6lander A. (2016). Regression standardization with the ® = 0
package stdReg. European Journal of Epidemiology 31(6), Delta-method

|
563-574. | Margin Std. Err. z P>|z|
Sjélander, A. (2018). Estimation of causal effect measureswith et et
the R-package stdReg. European Journal of Epidemiology _at |
33(9), 847-858. 1 .6083575 .0240991 25.24  0.000
2 | .0374899 .0072697 5.16 0.000
The margins command, cont’d (in Stata) QOutline

. margins, at(X=(0 1)) post
. nlcom (log_odds_diff:
log((_bl[2._at]/(1-_b[2._at])))-

log((_bll._at]/(1-_b[l._at]))))
______________ J'r______Efff;___ffiffi______f____]iifl______[: Estimation with regression models
log_odds_diff | -3.685885  .2254293 -16.35 0.000 4

Inverse probability weighting



Marginal effect through exposure model: IPW

> We have seen that marginal causal effect can be estimated
with IPW

» Like standardization, IPW requires modeling assumption
when X and/or Z is continuous (or categorical with many
levels)

» However, whereas standardization requires a model for the
outcome, IPW requires a model for the exposure

Code for IPW (in R)

\4

>
>
>
>
>
>
[

>
>
>

[

#step 1

fit <- glm(formula=X~Z7, family=binomial,

data=aids)

#step 2

pred <- predict (object=fit, type="respons")

w <— 1/ (aids$X*pred+ (l-aids$X) « (1-pred))

fstep 3 for x=0

p0 <- weighted.mean (aidsS$Y[aids$X==0], wlaids$X==0])
pO

1] 0.6079702

#step 3 for x=1

pl <- weighted.mean (aidsS$Y[aids$X==1], wl[aids$X==1])
pl

1] 0.03633255

Three steps for IPW

> Step 1: fit a regression model for the exposure
> Step 2: use the fitted exposure model to estimate the
subject-specific weight

1
W =
" p(XilZ)

> Step 3: Use p(Y = 1|X = x) in the weighted sample as an
estimate of p(Yx = 1)

Code for IPW (in Stata)

*step 1
logistic X Z
. xstep 2
. predict pred
gen w = 1/ (X*pred+ (1-X) = (1-pred))
*step 3
. mean Y [pweight = w], over (X)

Over | Mean Std. Err. [95% Conf. Int
_____________ o
Y |

0 | .6079702 .0243257 .5602348 .6
1 | .0363326 .0071898 .0222237 .0



The marginal causal log odds ratio

B(Yo=1)=0.6079702  p(Y; = 1) = 0.03633255

» We can use the estimates of p(Yp = 1) and p(Y; = 1) to
construct an estimate of the marginal causal log odds ratio

p(Ys=1) p(Yo=1) _
10g{1 —p(Ys = 1) 1—,6(Y0:1)} =372

» Interpretation?

The teffects command (in Stata)

. teffects ipw (Y) (X Z), pomeans

| Robust
Y | Coef. Std. Err z P>|z|
_____________ o
POmeans |
X |
0 | .6079702 .024303 25.02 0.000
1 | .0363326 .0070397 5.16 0.000

Standard errors

» Standard errors can be obtained with some additional
programming
» sandwich formula
» bootstrap

» Bootstrap:
s.e=0.23

> 95% Cl:

estimate + 1.96 x s.e. = —3.72 4+ 1.96 x 0.23 = (—3.27,—4.17)

Standardization vs. IPW

» Without modeling assumptions, standardization and IPW
[9F give the same results

————— » When using models, standardization and IPW may give

different results
» What method is best?



Choice of modeling assumptions

Z
IPy \stindardization
X—=Y

standardization
» Standardization and IPW models different parts of the DAG

» Standardization models how the outcome depends on the
exposure and confounders
> IPW models how the exposure depends on the confounders

» In some scenarios we may know more about one
mechanism than the other, so that one model is easier to
well specify

> e.g. we may know more about the guidelines for AZT
administration than we know about the biological
mechanisms underlying infection

Marginal structural models

» Both standardization and IPW can be generalized for
longitudinal studies with time-varying exposures

» However, IPW is easier to use than standardization when
the exposure is time-varying

> indeed, time varying exposures was the original motivation
for IPW

» When the exposure is time-varying, IPW is used to
estimate causal parameters in marginal structural
models

Statistical precision

» Standardization always gives more precise estimates than
IPW

> e.g. smaller standard errors and narrower confidence
intervals

» The difference may be large, in particular when the
exposure is continuous
> in which case IPW requires inverse weighting with a
probability density, which may give very unstable estimates

» This is an important advantage of standardization

Doubly robust estimation

» Standardization gives an unbiased estimate if the outcome
model is correct

» IPW gives an unbiased estimate if the exposure model is
correct

» But if either model is incorrect, then the obtained estimate
is generally biased

» It is possible to combine both models into a doubly robust
estimator

> unbiased if either model is correct, not necessarily both
> two chances of valid inference instead of only one
» beyond the scope of this course



Summary

» Standard methods for confounding control (e.qg.
stratification and outcome regression models) give
conditional (subpopulation) causal effects

» provided that we have conditional exchangeability, given the
measured confounders
» Often, marginal (population) causal effect may be more
relevant target parameters

» Marginal causal effects can be estimated with
standardization and IPW

» either non-parametrically, or with regression models
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