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The aim of epidemiological research

I Most epidemiological research questions are centered
around a particular exposure and a particular outcome

I Typically, we would like to know if the exposure has a
causal effect on the outcome
I hypothesis testing

I If there is a causal effect, we would also like to know its
magnitude
I effect estimation

X
?

// Y
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Randomized trials

I In randomized trials, the exposure-outcome association
can be given a causal interpretation

I E.g. the statistical risk ratio

p(Y = 1|X = 1)

p(Y = 1|X = 0)

is equal to the causal risk ratio

p(Y1 = 1)

p(Y0 = 1)
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Observational studies

I In observational studies, the exposure-outcome
association is usually confounded and cannot be given a
causal interpretation

U

�� ��
X // Y
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Confounder control

U

�� ��
X // Y

I Measured confounders can be controlled for, e.g. in a
regression model

I But unmeasured confounders may still bias the results
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Instrumental variable methods

I Instrumental variable (IV) methods is a collection of
methods with a remarkable property

I They can be used to test for/estimate causal effects in
the presence of unmeasured confounding

I IV methods have a long history in econometrics
I They have more recently become popular in epidemiology

I in particular through Mendelian randomization (MR)
studies, where the IV is a (set of) gene(s)
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Motivating example

I Kivimäki et al. (2011) aimed to study if obesity causes
common mental disorders (CMD)

I Obesity was measured with body mass index (BMI)
I CMD was measured with a continuous score, which was

subsequently dichotomized into ‘high’ and ‘low’
I Both BMI and CMD were measured on 4 occasions during

follow-up
I The exposure was defined as mean BMI across the 4

occasions
I The outcome was defined as the number of times, out of

the 4 occasions, that the subject had a high CMD score
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The study in a DAG

U

}} ""
BMI

?
// CMD

I A huge potential for confounding, e.g. by
I age
I sex
I socioeconomic status (SES)
I comorbid conditions
I etc
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The FTO gene

I The study participants were genotyped on the fat mass
and obesity (FTO) gene

I It has previously been shown that this gene affects BMI
I Kivimäki et al. (2011) used the FTO gene as an

instrumental variable (IV) in the analysis
I a Mendelian randomization (MR) study
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The IV assumptions

I IV methods can be used to test for/estimate causal effects
in the presence of unmeasured confounding

I No free lunch - all IV methods rely on strong assumptions:
I 1. The IV is associated with the exposure
I 2. The IV affects the outcome only through the

exposure
I 3. The association between the IV and the outcome is

unconfounded
I (Alternative formulations occur)
I Display the IV assumptions in a DAG
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Solution

I 1. The IV is associated with the exposure
I e.g. the IV affects the exposure:

U

�� ��
Z // X // Y

I e.g. the IV and the exposure have common causes:

W

~~   

U

�� ��
Z X // Y

I For convenience we will only consider the upper DAG
I all methods that we consider are valid for the lower DAG as

well
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Solution, cont’d

I 2. The IV affects the outcome only through the
exposure

U

�� ��
Z //

� �

88

* *
//

X // Y

14 / 88

Solution, cont’d

I 3. The association between the IV and the outcome is
unconfounded

V

��

55

��

U

�� ��

**

uuZ // X //
��ff Y
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The IV against the outcome

U

�� ��
Z // X // Y

I Suppose that we observe a statistical association between
Z and Y in the DAG above

I Is it then possible that X has no causal effect on Y ?
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Solution

U

�� ��
Z // X Y

I No. If X has no causal effect on Y , then there is no open
path between Z and Y

I Hence, if X has no causal effect on Y , then Z and Y
should be independent
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Hypothesis testing with IVs

U

�� ��
Z // X // Y

I And the other way around: if Z and Y are associated,
then X has a causal effect on Y

I This suggests a very simple strategy for hypothesis testing
I check if the Z is associated with Y
I if it is, then conclude that X has a causal effect on Y
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Generality of the approach

U

�� ��
Z // X // Y

I This IV hypothesis test is completely general in that it
allows for
I arbitrary types of variables (binary, categorical, continuous,

time-to-event etc)
I arbitrary statistical methods for testing (non-parametric test,

χ2-test, t-test, regression model etc)
I arbitrary sampling schemes (cross-sectional, prospective,

retrospective etc)
I ... as long as the three IV assumptions hold
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Results from the Kivimäki et al. (2011) study

This suggests that FTO provided a valid instrument for ad-
iposity indicators in men only. A formal test for evidence
against weak instruments confirmed this finding: In men, the
F value was 28.80 for mean BMI, 14.29 for overweight, and
11.51 for obesity, but the corresponding results for women
were all substantially below 10 (0.17, 0.06, and 0.66, re-
spectively). Despite statistical significance, the mean differ-
ence in adiposity between men with both risk alleles and
those with no risk alleles was modest. For BMI, it was 0.935
units (95% confidence interval (CI): 0.608, 1.262) (Table 2).
This is a small fraction of the observed variation in BMI,
because the difference in mean BMI between participants in
the top and bottom thirds of the BMI distribution was 6.644
units (95% CI: 6.506, 6.782).

In men, a greater number of FTO adiposity alleles was
associated with a greater number of times a participant was
found to be a GHQ case, but this observation was not ap-
parent in women. In men, the unadjusted beta coefficient for
this association was 0.074 (95% CI: 0.019, 0.129; P ¼
0.009) (Table 2). With adjustment for mean BMI across
the 4 clinical examinations, this coefficient was attenuated
by 4.5%, to 0.071 (95% CI: 0.015, 0.126; P ¼ 0.01). Ad-
justment for overweight or obesity did not further attenuate
the coefficient. There was no effect of interaction between
FTO and adiposity measures on CMD (P ¼ 0.42 for mean
BMI, P ¼ 0.07 for number of times overweight, and P ¼
0.13 for number of times obese).

Table 3 presents the association of the FTO genotype with
baseline characteristics in men and women. FTO genotype
was unrelated to these potentially confounding factors.

Association between adiposity measures and CMD in
men

Standard regression analysis showed an association be-
tween obesity and CMD in both unadjusted and
multivariable-adjusted models (Table 4). There was a weak
inverse relation between overweight and CMD among non-
obese men, but this association became attenuated to the
null after adjustment for baseline characteristics (the great-
est attenuation was observed when adjusting for age).

In the FTO genotype-instrumented analyses, there was
a strong association between all adiposity indicators (mean
BMI, number of times overweight, and number of times
obese) and CMD (Table 4). The regression coefficients for
these associations were substantially higher in instrumental-
variables analysis than in the standard regression analysis.

The distribution of the CMD measure was skewed (52.1%
of men were never a GHQ case, 25.9% were a case once,
12.9% twice, 6.1% 3 times, and 3.0% 4 times). To ensure that
our findings were not driven by outliers, we conducted a sen-
sitivity analysis with alternative outcome specifications
(Table 5). In standard regression analysis, obesity was asso-
ciated with a dichotomized CMD outcome irrespective of the
cutoff point applied (beta coefficients ranged from 0.056

Table 2. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Body Mass Index, Overweight, Obesity, and Common Mental

Disorders From 4 Repeated Assessments in Men and Women, Whitehall II Study, 1985–2004

Predictor
No. of

Participants

BMIa Overweightb Obesityb
Common

Mental Disordersc

b 95% CI b 95% CI b 95% CI b 95% CI

Men

No. of FTO adiposity
alleles

0 1,046 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 1,442 0.283 0.039, 0.526 0.200 0.064, 0.335 0.018 �0.054, 0.090 0.020 �0.065, 0.105

2 493 0.935 0.608, 1.262 0.331 0.144, 0.519 0.192 0.094, 0.289 0.172 0.058, 0.286

Per-allele increase 2,981 0.433 0.275, 0.592 0.173 0.083, 0.262 0.081 0.034, 0.129 0.074 0.019, 0.129

P for trend <0.0001 <0.0001 0.001 0.009

Women

No. of FTO adiposity
alleles

0 448 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 543 �0.183 �0.741, 0.376 0.015 �0.196, 0.225 �0.076 �0.441, 0.289 0.073 �0.074, 0.219

2 173 0.310 �0.474, 1.094 0.145 �0.155, 0.445 0.121 �0.391, 0.632 �0.011 �0.217, 0.194

Per-allele increase 1,164 0.077 �0.294, 0.449 0.058 �0.083, 0.120 0.012 �0.089, 0.114 0.012 �0.085, 0.110

P for trend 0.68 0.42 0.81 0.80

Abbreviations: BMI, body mass index; CI, confidence interval; FTO, fat mass and obesity-associated gene; GHQ, General Health Questionnaire.
a Mean BMI (weight (kg)/height (m)2) across 4 repeated clinical examinations conducted over a 19-year follow-up period.
b Number of times (range, 0–4) a participant was found to be overweight (BMI 25.0–29.9) or obese (BMI �30) in 4 examinations conducted over

a 19-year follow-up period. The analysis of overweight did not include obese participants and was therefore based on 2,473 men and 861 women.
c Number of times (range, 0–4) a participant was designated a GHQ ‘‘case’’ in 4 examinations conducted over a 19-year follow-up period. GHQ

score was used as the measure of common mental disorders.
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Conclusion

I If we believe that the FTO gene is a valid IV, then there
appears to be a causal effect of BMI on CMD for men, but
possibly not for women

I What could be the mechanisms behind such causal effect?
Biological? Sociological?
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Testability of the assumptions

I Like all statistical methods, IV methods rely on
assumptions

I Ideally these assumptions should be tested and verified
before the results are trusted

I In contrast to assumptions in ‘ordinary’ statistical models,
the IV assumptions are to a large extent untestable
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Assumption 1

I 1. The IV is associated with the exposure

U

�� ��
Z // X // Y

I Easy to verify with data
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Results from the Kivimäki et al. (2011) study

This suggests that FTO provided a valid instrument for ad-
iposity indicators in men only. A formal test for evidence
against weak instruments confirmed this finding: In men, the
F value was 28.80 for mean BMI, 14.29 for overweight, and
11.51 for obesity, but the corresponding results for women
were all substantially below 10 (0.17, 0.06, and 0.66, re-
spectively). Despite statistical significance, the mean differ-
ence in adiposity between men with both risk alleles and
those with no risk alleles was modest. For BMI, it was 0.935
units (95% confidence interval (CI): 0.608, 1.262) (Table 2).
This is a small fraction of the observed variation in BMI,
because the difference in mean BMI between participants in
the top and bottom thirds of the BMI distribution was 6.644
units (95% CI: 6.506, 6.782).

In men, a greater number of FTO adiposity alleles was
associated with a greater number of times a participant was
found to be a GHQ case, but this observation was not ap-
parent in women. In men, the unadjusted beta coefficient for
this association was 0.074 (95% CI: 0.019, 0.129; P ¼
0.009) (Table 2). With adjustment for mean BMI across
the 4 clinical examinations, this coefficient was attenuated
by 4.5%, to 0.071 (95% CI: 0.015, 0.126; P ¼ 0.01). Ad-
justment for overweight or obesity did not further attenuate
the coefficient. There was no effect of interaction between
FTO and adiposity measures on CMD (P ¼ 0.42 for mean
BMI, P ¼ 0.07 for number of times overweight, and P ¼
0.13 for number of times obese).

Table 3 presents the association of the FTO genotype with
baseline characteristics in men and women. FTO genotype
was unrelated to these potentially confounding factors.

Association between adiposity measures and CMD in
men

Standard regression analysis showed an association be-
tween obesity and CMD in both unadjusted and
multivariable-adjusted models (Table 4). There was a weak
inverse relation between overweight and CMD among non-
obese men, but this association became attenuated to the
null after adjustment for baseline characteristics (the great-
est attenuation was observed when adjusting for age).

In the FTO genotype-instrumented analyses, there was
a strong association between all adiposity indicators (mean
BMI, number of times overweight, and number of times
obese) and CMD (Table 4). The regression coefficients for
these associations were substantially higher in instrumental-
variables analysis than in the standard regression analysis.

The distribution of the CMD measure was skewed (52.1%
of men were never a GHQ case, 25.9% were a case once,
12.9% twice, 6.1% 3 times, and 3.0% 4 times). To ensure that
our findings were not driven by outliers, we conducted a sen-
sitivity analysis with alternative outcome specifications
(Table 5). In standard regression analysis, obesity was asso-
ciated with a dichotomized CMD outcome irrespective of the
cutoff point applied (beta coefficients ranged from 0.056

Table 2. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Body Mass Index, Overweight, Obesity, and Common Mental

Disorders From 4 Repeated Assessments in Men and Women, Whitehall II Study, 1985–2004

Predictor
No. of

Participants

BMIa Overweightb Obesityb
Common

Mental Disordersc

b 95% CI b 95% CI b 95% CI b 95% CI

Men

No. of FTO adiposity
alleles

0 1,046 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 1,442 0.283 0.039, 0.526 0.200 0.064, 0.335 0.018 �0.054, 0.090 0.020 �0.065, 0.105

2 493 0.935 0.608, 1.262 0.331 0.144, 0.519 0.192 0.094, 0.289 0.172 0.058, 0.286

Per-allele increase 2,981 0.433 0.275, 0.592 0.173 0.083, 0.262 0.081 0.034, 0.129 0.074 0.019, 0.129

P for trend <0.0001 <0.0001 0.001 0.009

Women

No. of FTO adiposity
alleles

0 448 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 543 �0.183 �0.741, 0.376 0.015 �0.196, 0.225 �0.076 �0.441, 0.289 0.073 �0.074, 0.219

2 173 0.310 �0.474, 1.094 0.145 �0.155, 0.445 0.121 �0.391, 0.632 �0.011 �0.217, 0.194

Per-allele increase 1,164 0.077 �0.294, 0.449 0.058 �0.083, 0.120 0.012 �0.089, 0.114 0.012 �0.085, 0.110

P for trend 0.68 0.42 0.81 0.80

Abbreviations: BMI, body mass index; CI, confidence interval; FTO, fat mass and obesity-associated gene; GHQ, General Health Questionnaire.
a Mean BMI (weight (kg)/height (m)2) across 4 repeated clinical examinations conducted over a 19-year follow-up period.
b Number of times (range, 0–4) a participant was found to be overweight (BMI 25.0–29.9) or obese (BMI �30) in 4 examinations conducted over

a 19-year follow-up period. The analysis of overweight did not include obese participants and was therefore based on 2,473 men and 861 women.
c Number of times (range, 0–4) a participant was designated a GHQ ‘‘case’’ in 4 examinations conducted over a 19-year follow-up period. GHQ

score was used as the measure of common mental disorders.
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Assumptions 2 and 3

I 2. The IV affects the outcome only through the
exposure

I 3. The association between the IV and the outcome is
unconfounded
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I Much harder, because the confounders U are (at least
partially) unmeasured
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Results from the Kivimäki et al. (2011) study

(P¼ 0.03) to 0.117 (P¼ 0.005), depending on the cutoff). No
such association was found for mean BMI or overweight.

In instrumental-variables analysis, there was a robust as-
sociation between all adiposity indicators and all dichoto-
mized CMD outcomes, with the strongest association being
seen for CMD defined as being a GHQ case at all 4 exam-
inations versus being a case at 0–3 examinations (b¼ 0.857,
P < 0.0001); the weakest association, though the effect was
still substantial, was found for CMD defined as being

a GHQ case in any examination versus none (b ¼ 0.653,
P ¼ 0.002) (Table 5).

Role of diabetes and prediabetes

In the last medical examination, 215 men were diabetic
and 452 prediabetic (357 had impaired fasting glucose and
95 impaired glucose tolerance). We repeated the main anal-
ysis presented in Table 4 with models adjusted for diabetes
and prediabetes status. This adjustment slightly attenuated

Table 3. Associations of Fat Mass and Obesity-Associated (FTO) GenotypeWith Factors Potentially Confounding

the Relation Between Obesity and Common Mental Disorders in Men and Women, Whitehall II Study, 1985–2004

Baseline
Characteristic

No. of FTO Adiposity Alleles

P Value0 1 2

No. % Mean (SD) No. % Mean (SD) No. % Mean (SD)

Men

Maximum no. of participants 1,046 1,442 493

Age, years 44.0 (6.1) 43.7 (5.9) 44.0 (5.7) 0.75

Marital status (married) 82.8 84.4 82.4 0.45

Socioeconomic position

High 39.6 41.5 44.4 0.39

Intermediate 54.8 53.7 51.3

Low 5.6 4.9 4.3

Chronic disease 8.3 10.8 9.7 0.12

Prevalent coronary
heart disease

0.8 0.6 0.8 0.75

Prevalent diabetes 0.5 0.6 0.8 0.72

Use of psychotropic drugs 2.3 2.0 2.2 0.88

High alcohol consumptiona 16.4 17.4 20.6 0.13

Physical inactivity 23.8 19.8 22.6 0.051

Current smoking 10.4 11.9 9.2 0.20

Women

Maximum no. of
participants

448 543 173

Age, years 44.0 (6.1) 44.5 (5.8) 44.7 (5.9) 0.13

Marital status (married) 60.5 57.3 61.9 0.44

Socioeconomic position

High 15.2 16.1 19.7 0.20

Intermediate 44.0 46.5 49.7

Low 40.9 37.5 30.6

Chronic disease 10.4 9.2 8.8 0.78

Prevalent coronary
heart disease

0.4 0.4 0.0 0.69

Prevalent diabetes 0.5 0.4 0.0 0.69

Use of psychotropic drugs 4.0 4.4 4.1 0.94

High alcohol
consumptionb

3.0 3.5 5.8 0.24

Physical inactivity 41.3 38.0 39.3 0.59

Current smoking 13.3 17.3 17.1 0.20

Abbreviations: FTO, fat mass and obesity-associated gene; SD, standard deviation.
a >21 alcohol units per week.
b >14 alcohol units per week.

FTO, Obesity, and Common Mental Disorders 425
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Results from the Kivimäki et al. (2011) study, cont’d

(P¼ 0.03) to 0.117 (P¼ 0.005), depending on the cutoff). No
such association was found for mean BMI or overweight.

In instrumental-variables analysis, there was a robust as-
sociation between all adiposity indicators and all dichoto-
mized CMD outcomes, with the strongest association being
seen for CMD defined as being a GHQ case at all 4 exam-
inations versus being a case at 0–3 examinations (b¼ 0.857,
P < 0.0001); the weakest association, though the effect was
still substantial, was found for CMD defined as being

a GHQ case in any examination versus none (b ¼ 0.653,
P ¼ 0.002) (Table 5).

Role of diabetes and prediabetes

In the last medical examination, 215 men were diabetic
and 452 prediabetic (357 had impaired fasting glucose and
95 impaired glucose tolerance). We repeated the main anal-
ysis presented in Table 4 with models adjusted for diabetes
and prediabetes status. This adjustment slightly attenuated

Table 3. Associations of Fat Mass and Obesity-Associated (FTO) GenotypeWith Factors Potentially Confounding

the Relation Between Obesity and Common Mental Disorders in Men and Women, Whitehall II Study, 1985–2004

Baseline
Characteristic

No. of FTO Adiposity Alleles

P Value0 1 2

No. % Mean (SD) No. % Mean (SD) No. % Mean (SD)

Men

Maximum no. of participants 1,046 1,442 493

Age, years 44.0 (6.1) 43.7 (5.9) 44.0 (5.7) 0.75

Marital status (married) 82.8 84.4 82.4 0.45

Socioeconomic position

High 39.6 41.5 44.4 0.39

Intermediate 54.8 53.7 51.3

Low 5.6 4.9 4.3

Chronic disease 8.3 10.8 9.7 0.12

Prevalent coronary
heart disease

0.8 0.6 0.8 0.75

Prevalent diabetes 0.5 0.6 0.8 0.72

Use of psychotropic drugs 2.3 2.0 2.2 0.88

High alcohol consumptiona 16.4 17.4 20.6 0.13

Physical inactivity 23.8 19.8 22.6 0.051

Current smoking 10.4 11.9 9.2 0.20

Women

Maximum no. of
participants

448 543 173

Age, years 44.0 (6.1) 44.5 (5.8) 44.7 (5.9) 0.13

Marital status (married) 60.5 57.3 61.9 0.44

Socioeconomic position

High 15.2 16.1 19.7 0.20

Intermediate 44.0 46.5 49.7

Low 40.9 37.5 30.6

Chronic disease 10.4 9.2 8.8 0.78

Prevalent coronary
heart disease

0.4 0.4 0.0 0.69

Prevalent diabetes 0.5 0.4 0.0 0.69

Use of psychotropic drugs 4.0 4.4 4.1 0.94

High alcohol
consumptionb

3.0 3.5 5.8 0.24

Physical inactivity 41.3 38.0 39.3 0.59

Current smoking 13.3 17.3 17.1 0.20

Abbreviations: FTO, fat mass and obesity-associated gene; SD, standard deviation.
a >21 alcohol units per week.
b >14 alcohol units per week.

FTO, Obesity, and Common Mental Disorders 425

Am J Epidemiol 2011;173:421–429
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Conclusion

I In the Kivimäki et al. (2011) study, the IV is independent of
all observed predictors for the outcome

I What assumption(s) does this support?
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Assumption 3 in MR studies

I The association between the IV and the the outcome is
unconfounded

V
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I If genes were randomized, then this assumption would be
true

I Are genes randomized?
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Meiosis

I In meiosis, the child randomly receives one allele from the
father and one allele from the mother

I So in this sense, the child’s alleles are randomized
conditional on the parents’ genes
I thus the term ‘Mendelian randomization’

I But in typical MR studies we have not measured the
parents’ genes, so the analysis cannot condition on these

I As a consequence, MR studies may suffer from problems
due to parental genetic effects and population mixture
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Parental genetic effects

I The parents’ genes clearly affect the child’s genes
I Suppose that the parents’ genes also affect the child’s

outcome
I e.g. by affecting how the parents behave to the child

PG
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Z // X // Y

I Then assumption 3 would be violated
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Population mixture

I Suppose that there is population mixture
I i.e. the study population consists of different ethnic groups

I The genetic IV may have different distributions in different
ethnic groups

I Suppose that the ethnicity also affects the outcome
I e.g. due to social or cultural differences, some ethnic

groups are more likely to develop the outcome than other

E
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U
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Z // X // Y

I Then assumption 3 would be violated
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A special application of IVs

I The IV assumption are crucial, but too a large extent
untestable

I There is one special application of IVs, in which the IV
assumptions are (almost) guaranteed to hold

I This is the randomized controlled trial (RCT) with
non-compliance
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The basic scenario

I Z is the ‘assigned treatment level’
I Z = 1 for ‘assigned to treatment’, Z = 0 for ‘assigned to no

treatment’
I X is the ‘treatment level actually taken’

I X = 1 for ‘took the treatment’, X = 0 for ‘did not take the
treatment’

I Y is the outcome of interest
I U is the set of all factors that may affect both the outcome,

and the treatment level the subject decides to take
I e.g. age, sex, health status

I Simplifying assumption:
I no blinding
I ‘treatment’ vs ‘no treatment’, not ‘treatment’ vs ‘placebo’
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The DAG for the RCT

U

�� ��
Z // X // Y

I The treatment assignment Z can be viewed as an IV
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Assumption 1

I 1. The IV is associated with the exposure

U

�� ��
Z // X // Y

I This assumption holds, since the decision to take the
treatment or not is influenced by the assignment
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Assumption 2

I 2. The IV affects the outcome only through the
exposure

U
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X // Y

I In RCT’s, a direct effect of Z on Y is possible in principle,
but unlikely in practice
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Assumption 3

I 3. The association between the IV and the outcome is
unconfounded
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I This assumption holds, due to randomization of assigned
treatment level
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The AT analysis

U

�� ��
Z // X // Y

I One possible method to analyze RCTs with
non-compliance is the ‘as-treated’ (AT) analysis

I In this analysis, one tests for an association between
‘treatment actually taken’ (X ) and the outcome (Y )

I This analysis is typically confounded (by U), and does not
give a causal effect
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The ITT analysis

U

�� ��
Z // X // Y

I The most common method to analyze RCTs with
non-compliance is the ‘intention-to-treat’ (ITT) analysis

I In this analysis, one tests for an association between
‘assigned treatment level’ (Z ) and the outcome (Y )

I This is exactly the IV hypothesis test we discussed
previously

I The ITT analysis proves whether the treatment has a
causal effect on the outcome
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Outline
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Verifying the IV assumptions

The RCT with non-compliance

Effect estimation
Non-parametric bounds
Causal linear models

Additional points
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Motivating example

I Sommer and Zeger (1991) considered a RCT of vitamin A
supplement in northern Sumatra

I In the treatment group, oral doses of vitamin A were
administered at 3 and 6 months

I At 12 months, mortality was determined

45 / 88

Results from the Sommer and Zeger (1991) study
EFFICACY FROM CLINICAL TRIALS 47 

Table I. Mortality rates in control and programme villages, months 
4-12, stratified by compliance 

Mortality 
Study group Complied Children Deaths (per 1OOO) 

- Control 11,588 74 6.4 
Treatment 12,094 46 3.8 

Yes 9,675 12 1.2 
No 2,4 19 34 14.1 

- 

2419 children from the treatment group who did not receive vitamin A, 34 or 1.4 per cent died. 
This rate is twice as high as in the control group (0.64 per cent). The ability to receive a vitamin A 
capsule strongly predicts chance of survival. This is exactly the situation where a comparison of 
compliers in the two groups can lead to substantially biased estimates of efficacy. This study did 
not involve a placebo and so even the direct but potentially biased estimate of biologic efficacy is 
not possible. Tarwotjo et ~ 1 . ~  first proposed the method developed in the next section as an 
alternative. 

3. ESTIMATING EFFICACY 

We can display data from an RCT with two groups and a binary response in a 2 x 2 x 2 table as 
in Table 11. In the treatment subtable (right), we can classify correctly all persons since we know 
both compliance and outcome. We observe the vector (no,, n o , ,  nlo,  n l l ) .  In a control group 
without placebo, we know only the response. Since there was no placebo, the compliance variable 
was not observable. Hence, we know only the marginal totals 

and ml, = mIo + m l l .  mo, = moo + mol 

The approach is to infer the missing elements in the left table and then to compare the observed 
risk of mortality for the compliers in the treatment group with the inferred risk for the compliers 
in the control group. The randomization provides the basis for obtaining unbiased estimates of all 
the entries of the (left) table for the control group, under the assumption that the compliance 
profiles are the same in the two groups as they would be if control and treatment regimens 
presented the same compliance challenge. Specifically, such a randomized study would: 

(a) Have the same expected rate of compliance in the two study groups; 
(b) Produce non-compliant subgroups in the two study arms which had the same expected rate 

Table 111 shows a parameterization of the expected cell probabilities (defined to add to 1 in both 
the treatment and control subtables) that incorporates these assumptions. Here y is the biologic 
efficacy; ct is the mortality rate among non-compliers, which in an RCT we can assume is the same 
in both groups; 6 is the compliance rate, also assumed to be common to both groups; and B is the 
mortality rate for compliers in the control group. 

Assumptions (a) and (b) define the situation where we can estimate efficacy by the relative risk 

of mortality, since in both arms the non-compliers receive no treatment. 
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regimen. As compliance decreases, effectiveness will decrease, regardless of the efficacy of the 
treatment. Schwartz and Lellouch8 have referred to biologic efficacy and programmatic effect- 
iveness as explanatory and pragmatic effects respectively. 

Efficacy and effectiveness address distinct scientific questions. Both are important. The current 
preference for intent-to-treat analyses results partially from the lack of an acceptable approach to 
avoid selection bias when estimating efficacy. This paper proposes a solution to this problem for 
RCTs with dichotomous outcomes. Our method ignores control compliance data and therefore 
estimates the sum of the biologic action of the drug which is of interest plus the difference between 
the placebo effect of administering the treatment and control regimens. However, one avoids the 
serious problem of selection bias. 

Motivation for the method came from a randomized community trial of the impact of periodic 
vitamin A supplementation on children’s mortality, where children in the control group were 
precluded from receiving a placebo for ethical reasons.’ Section 2 summarizes the vitamin A 
study. Section 3 contains the derivation and statistical properties of an efficacy estimate of relative 
risk. Section 4 applies the method to data from the Indonesian vitamin A project. In Section 5 we 
consider the case of a placebo-controlled trial where the non-compliant subgroups in the treated 
and control groups were assessed as not comparable. Here, whether or not to ignore the 
compliance data for the control group involves a trade-off between precision and bias. The final 
section discusses extensions of the method to attributable rather than relative risk and to non- 
dichotomous measures of compliance and outcome variables. 

2. MOTIVATING EXAMPLE 

The efficacy relative risk derived in the next section was motivated by a community based 
randomized trial of vitamin A supplementation to reduce mortality among preschool children in 
rural Indonesia.’ Children who resided in 225 randomly selected villages out of 450 would receive 
a large oral dose of vitamin A two to three months following baseline enumeration and again six 
months later. Deaths were ascertained in a second population census 12 months following the 
baseline census. Results were compared with mortality in the remaining 225 villages, where data 
were collected in identical fashion. Indonesian government policy precluded the use of a placebo. 

An intent-to-treat analysis was performed to estimate the programmatic effectiveness of the 
vitamin A distribution. The mortality in the two groups from month 4 (following completion of 
the first distribution cycle) to month 12 was compared. As shown in Table I, there were 46 deaths 
out of 12,094 children (0.38 per cent) in the villages randomized to vitamin A, as opposed to 
74 out of 11,588 (0.64 per cent) in control villages. The effectiveness relative risk is estimated by 
0.3810.64 = 0.59 (95 per cent confidence interval 0.41 to 0.86). Hence, the data suggest roughly 
a 40 per cent reduction in mortality associated with the vitamin A distribution programme. 

Nearly 20 per cent of the treatment group failed to receive vitamin A as prescribed. A second 
and equally important question is therefore how efficacious is vitamin A supplementation among 
those children to whom the treatment was actually delivered. Here, the biologic action of vitamin 
A is the focus. The question is relevant because the distribution system used in the trial would not 
be the method of choice in a subsequent government programme if vitamin A were proven to 
reduce mortality. Fortification of a daily food item such as monosodium glutamate or salt would 
likely be preferred. By knowing the biologic efficacy of vitamin A supplementation and the rate of 
successful delivery under a new programme, its programmatic effectiveness could be determined. 

Table I also displays the vitamin A data stratified by compliance. Note that the non-compliers 
in the vitamin A group have a higher mortality rate than the control group as a whole. Of the 

I This the effect of ‘treatment assignment’ (the ITT effect),
not the effect of treatment

I What is the treament effect?
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The IV assumptions are not enough for estimation

I We have seen that we can test for a causal exposure
effect, assuming that the IV assumptions hold

I Balke and Pearl (1997) showed that the IV assumptions
are not enough to estimate the causal exposure effect

I However, they showed that the causal effect can
sometimes be bounded
I i.e. that it may be possible to provide a range of possible

values, given the observed data
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Notation

I Suppose that Z , X , and Y are binary
I Let p(Y1 = 1) be the counterfactual probability of the

outcome, had everybody been exposed
I Let p(Y0 = 1) be the counterfactual probability of the

outcome, had everybody been unexposed
I Let ψ be the causal risk difference

ψ = p(Y1 = 1)− p(Y0 = 1)

I Balke and Pearl (1997) showed that ψ is not estimable
even if the IV assumptions hold
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Bounds

I Define pyx .z = p(Y = y ,X = x |Z = z)

I Balke and Pearl (1997) showed that

≤ ψ ≤

I (Note: the right inequality sign is turned the wrong way in
Balke and Pearl (1997))

I All components in the lower and upper bounds are
estimable
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The Sommer and Zeger (1991) study revisited
EFFICACY FROM CLINICAL TRIALS 47 

Table I. Mortality rates in control and programme villages, months 
4-12, stratified by compliance 

Mortality 
Study group Complied Children Deaths (per 1OOO) 

- Control 11,588 74 6.4 
Treatment 12,094 46 3.8 

Yes 9,675 12 1.2 
No 2,4 19 34 14.1 

- 

2419 children from the treatment group who did not receive vitamin A, 34 or 1.4 per cent died. 
This rate is twice as high as in the control group (0.64 per cent). The ability to receive a vitamin A 
capsule strongly predicts chance of survival. This is exactly the situation where a comparison of 
compliers in the two groups can lead to substantially biased estimates of efficacy. This study did 
not involve a placebo and so even the direct but potentially biased estimate of biologic efficacy is 
not possible. Tarwotjo et ~ 1 . ~  first proposed the method developed in the next section as an 
alternative. 

3. ESTIMATING EFFICACY 

We can display data from an RCT with two groups and a binary response in a 2 x 2 x 2 table as 
in Table 11. In the treatment subtable (right), we can classify correctly all persons since we know 
both compliance and outcome. We observe the vector (no,, n o , ,  nlo,  n l l ) .  In a control group 
without placebo, we know only the response. Since there was no placebo, the compliance variable 
was not observable. Hence, we know only the marginal totals 

and ml, = mIo + m l l .  mo, = moo + mol 

The approach is to infer the missing elements in the left table and then to compare the observed 
risk of mortality for the compliers in the treatment group with the inferred risk for the compliers 
in the control group. The randomization provides the basis for obtaining unbiased estimates of all 
the entries of the (left) table for the control group, under the assumption that the compliance 
profiles are the same in the two groups as they would be if control and treatment regimens 
presented the same compliance challenge. Specifically, such a randomized study would: 

(a) Have the same expected rate of compliance in the two study groups; 
(b) Produce non-compliant subgroups in the two study arms which had the same expected rate 

Table 111 shows a parameterization of the expected cell probabilities (defined to add to 1 in both 
the treatment and control subtables) that incorporates these assumptions. Here y is the biologic 
efficacy; ct is the mortality rate among non-compliers, which in an RCT we can assume is the same 
in both groups; 6 is the compliance rate, also assumed to be common to both groups; and B is the 
mortality rate for compliers in the control group. 

Assumptions (a) and (b) define the situation where we can estimate efficacy by the relative risk 

of mortality, since in both arms the non-compliers receive no treatment. 

I Z = 1 for ‘randomized to vitamine A’, X = 1 for ‘took
vitamine A’, Y = 1 for ‘survived’

I To calculate bounds for the causal risk difference we need
pyx .z for all combinations of y , x and z

p00.0 = 74/11588 = 0.0064

p01.0 = 0

p10.0 = (11588 − 74)/11588 = 0.9936

p11.0 = 0

p00.1 = 34/12094 = 0.0028

p01.1 = 12/12094 = 0.0010

p10.1 = (2419 − 34)/12094 = 0.1972

p11.1 = (9675 − 12)/12094 = 0.7990
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Bounds in the Sommer and Zeger (1991) study

−0.1946 ≤ ψ ≤ 0.0054

I The bounds include the value 0, thus it is possible that
there is no causal effect of vitamin A

I But we observed an ITT effect! Doesn’t the presence of an
ITT effect prove that there is a causal treatment effect?

I The presence of an ITT effect implies that there is a causal
effect for some subjects in the population

I But the average (population) causal effect may still be 0, if
there is heterogeneity in treatment response
I i.e. the treatment is harmful for some subjects but not for

other subjects (Balke and Pearl, 1997)
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Bounds in the Sommer and Zeger (1991) study, cont’d

−0.1946 ≤ ψ ≤ 0.0054

I The bounds include negative values, thus it is possible that
causal effect of vitamin A is negative
I even though the ITT effect is positive

I Again, this could happen if there is a strong heterogeneity
in treatment response
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Bounds vs confidence intervals

−0.1946 ≤ ψ ≤ 0.0054

I The bounds should not be confused with a confidence
interval

I A confidence interval quantifies the uncertainty due to
sampling variability
I decreases with sample size

I The bounds quantify the uncertainty due to unmeasured
confounding
I does not decrease with sample size

I In practice; estimate the lower and upper bound, and
compute confidence intervals for the estimates
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Limitations of the bounds

I The bounds show how much (or little!) we can say about
the causal effect, without further assumptions than the IV
assumptions

I But sometimes additional assumptions are reasonable,
such as (approximate) homogeneity in treatment response

I Also, the bounds are difficult to apply for non-binary
variables
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Outline
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Verifying the IV assumptions

The RCT with non-compliance

Effect estimation
Non-parametric bounds
Causal linear models

Additional points
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The causal linear model

E(Yx |U) = ψx + f (U)

I f (U) is an unspecified (linear or non-linear) function of U
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Interpretation of ψ

I ψ is the conditional causal effect of X on Y , given U
I It measures the increase in the mean of Y , when X is

increased with 1 unit, for those with a given value of U

E(Yx+1|U)− E(Yx |U) = {ψ(x + 1) + f (U)} − {ψx + f (U)} = ψ
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Alternative interpretation of ψ

I Because the mean difference is collapsible, ψ is also the
marginal causal effect of X on Y

I It measures the increase in the mean of Y , when X is
increased with 1 unit, for the whole population

E(Yx+1)− E(Yx )

= E{E(Yx+1|U)} − E{E(Yx |U)}
= E{E(Yx+1|U)− E(Yx |U)}
= ψ
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Assumptions in the causal linear model

E(Yx |U) = ψx + f (U)

I Linear effect of X on Y
I The effect of X is the same across levels of U

I no effect modification by U
I aka no interaction between X and U on the linear scale
I aka homogeneity in treatment response
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TS-estimation

E(Yx |U) = ψx + f (U)

I A convenient way to estimate ψ is to use ‘two-stage’ (TS)
estimation

I First stage: fit a ‘working’ linear regression model for X on
Z

I Second stage: fit a ‘working’ linear regression model for Y
on Z

I Estimate ψ as the ratio of the two regression slopes
I TS-estimation gives an unbiased estimate of ψ regardless

of whether the working models are correct or not
I provided that the IV assumptions hold, and the causal

linear model is correct
I doesn’t matter whether we assume linear, dominant or

recessive effect of genetic alleles in working models
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Results from the Kivimäki et al. (2011) study

This suggests that FTO provided a valid instrument for ad-
iposity indicators in men only. A formal test for evidence
against weak instruments confirmed this finding: In men, the
F value was 28.80 for mean BMI, 14.29 for overweight, and
11.51 for obesity, but the corresponding results for women
were all substantially below 10 (0.17, 0.06, and 0.66, re-
spectively). Despite statistical significance, the mean differ-
ence in adiposity between men with both risk alleles and
those with no risk alleles was modest. For BMI, it was 0.935
units (95% confidence interval (CI): 0.608, 1.262) (Table 2).
This is a small fraction of the observed variation in BMI,
because the difference in mean BMI between participants in
the top and bottom thirds of the BMI distribution was 6.644
units (95% CI: 6.506, 6.782).

In men, a greater number of FTO adiposity alleles was
associated with a greater number of times a participant was
found to be a GHQ case, but this observation was not ap-
parent in women. In men, the unadjusted beta coefficient for
this association was 0.074 (95% CI: 0.019, 0.129; P ¼
0.009) (Table 2). With adjustment for mean BMI across
the 4 clinical examinations, this coefficient was attenuated
by 4.5%, to 0.071 (95% CI: 0.015, 0.126; P ¼ 0.01). Ad-
justment for overweight or obesity did not further attenuate
the coefficient. There was no effect of interaction between
FTO and adiposity measures on CMD (P ¼ 0.42 for mean
BMI, P ¼ 0.07 for number of times overweight, and P ¼
0.13 for number of times obese).

Table 3 presents the association of the FTO genotype with
baseline characteristics in men and women. FTO genotype
was unrelated to these potentially confounding factors.

Association between adiposity measures and CMD in
men

Standard regression analysis showed an association be-
tween obesity and CMD in both unadjusted and
multivariable-adjusted models (Table 4). There was a weak
inverse relation between overweight and CMD among non-
obese men, but this association became attenuated to the
null after adjustment for baseline characteristics (the great-
est attenuation was observed when adjusting for age).

In the FTO genotype-instrumented analyses, there was
a strong association between all adiposity indicators (mean
BMI, number of times overweight, and number of times
obese) and CMD (Table 4). The regression coefficients for
these associations were substantially higher in instrumental-
variables analysis than in the standard regression analysis.

The distribution of the CMD measure was skewed (52.1%
of men were never a GHQ case, 25.9% were a case once,
12.9% twice, 6.1% 3 times, and 3.0% 4 times). To ensure that
our findings were not driven by outliers, we conducted a sen-
sitivity analysis with alternative outcome specifications
(Table 5). In standard regression analysis, obesity was asso-
ciated with a dichotomized CMD outcome irrespective of the
cutoff point applied (beta coefficients ranged from 0.056

Table 2. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Body Mass Index, Overweight, Obesity, and Common Mental

Disorders From 4 Repeated Assessments in Men and Women, Whitehall II Study, 1985–2004

Predictor
No. of

Participants

BMIa Overweightb Obesityb
Common

Mental Disordersc

b 95% CI b 95% CI b 95% CI b 95% CI

Men

No. of FTO adiposity
alleles

0 1,046 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 1,442 0.283 0.039, 0.526 0.200 0.064, 0.335 0.018 �0.054, 0.090 0.020 �0.065, 0.105

2 493 0.935 0.608, 1.262 0.331 0.144, 0.519 0.192 0.094, 0.289 0.172 0.058, 0.286

Per-allele increase 2,981 0.433 0.275, 0.592 0.173 0.083, 0.262 0.081 0.034, 0.129 0.074 0.019, 0.129

P for trend <0.0001 <0.0001 0.001 0.009

Women

No. of FTO adiposity
alleles

0 448 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 543 �0.183 �0.741, 0.376 0.015 �0.196, 0.225 �0.076 �0.441, 0.289 0.073 �0.074, 0.219

2 173 0.310 �0.474, 1.094 0.145 �0.155, 0.445 0.121 �0.391, 0.632 �0.011 �0.217, 0.194

Per-allele increase 1,164 0.077 �0.294, 0.449 0.058 �0.083, 0.120 0.012 �0.089, 0.114 0.012 �0.085, 0.110

P for trend 0.68 0.42 0.81 0.80

Abbreviations: BMI, body mass index; CI, confidence interval; FTO, fat mass and obesity-associated gene; GHQ, General Health Questionnaire.
a Mean BMI (weight (kg)/height (m)2) across 4 repeated clinical examinations conducted over a 19-year follow-up period.
b Number of times (range, 0–4) a participant was found to be overweight (BMI 25.0–29.9) or obese (BMI �30) in 4 examinations conducted over

a 19-year follow-up period. The analysis of overweight did not include obese participants and was therefore based on 2,473 men and 861 women.
c Number of times (range, 0–4) a participant was designated a GHQ ‘‘case’’ in 4 examinations conducted over a 19-year follow-up period. GHQ

score was used as the measure of common mental disorders.
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ψ̂men = 0.074/0.433 = 0.17
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Results from the Kivimäki et al. (2011) study, cont’d

This suggests that FTO provided a valid instrument for ad-
iposity indicators in men only. A formal test for evidence
against weak instruments confirmed this finding: In men, the
F value was 28.80 for mean BMI, 14.29 for overweight, and
11.51 for obesity, but the corresponding results for women
were all substantially below 10 (0.17, 0.06, and 0.66, re-
spectively). Despite statistical significance, the mean differ-
ence in adiposity between men with both risk alleles and
those with no risk alleles was modest. For BMI, it was 0.935
units (95% confidence interval (CI): 0.608, 1.262) (Table 2).
This is a small fraction of the observed variation in BMI,
because the difference in mean BMI between participants in
the top and bottom thirds of the BMI distribution was 6.644
units (95% CI: 6.506, 6.782).

In men, a greater number of FTO adiposity alleles was
associated with a greater number of times a participant was
found to be a GHQ case, but this observation was not ap-
parent in women. In men, the unadjusted beta coefficient for
this association was 0.074 (95% CI: 0.019, 0.129; P ¼
0.009) (Table 2). With adjustment for mean BMI across
the 4 clinical examinations, this coefficient was attenuated
by 4.5%, to 0.071 (95% CI: 0.015, 0.126; P ¼ 0.01). Ad-
justment for overweight or obesity did not further attenuate
the coefficient. There was no effect of interaction between
FTO and adiposity measures on CMD (P ¼ 0.42 for mean
BMI, P ¼ 0.07 for number of times overweight, and P ¼
0.13 for number of times obese).

Table 3 presents the association of the FTO genotype with
baseline characteristics in men and women. FTO genotype
was unrelated to these potentially confounding factors.

Association between adiposity measures and CMD in
men

Standard regression analysis showed an association be-
tween obesity and CMD in both unadjusted and
multivariable-adjusted models (Table 4). There was a weak
inverse relation between overweight and CMD among non-
obese men, but this association became attenuated to the
null after adjustment for baseline characteristics (the great-
est attenuation was observed when adjusting for age).

In the FTO genotype-instrumented analyses, there was
a strong association between all adiposity indicators (mean
BMI, number of times overweight, and number of times
obese) and CMD (Table 4). The regression coefficients for
these associations were substantially higher in instrumental-
variables analysis than in the standard regression analysis.

The distribution of the CMD measure was skewed (52.1%
of men were never a GHQ case, 25.9% were a case once,
12.9% twice, 6.1% 3 times, and 3.0% 4 times). To ensure that
our findings were not driven by outliers, we conducted a sen-
sitivity analysis with alternative outcome specifications
(Table 5). In standard regression analysis, obesity was asso-
ciated with a dichotomized CMD outcome irrespective of the
cutoff point applied (beta coefficients ranged from 0.056

Table 2. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Body Mass Index, Overweight, Obesity, and Common Mental

Disorders From 4 Repeated Assessments in Men and Women, Whitehall II Study, 1985–2004

Predictor
No. of

Participants

BMIa Overweightb Obesityb
Common

Mental Disordersc

b 95% CI b 95% CI b 95% CI b 95% CI

Men

No. of FTO adiposity
alleles

0 1,046 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 1,442 0.283 0.039, 0.526 0.200 0.064, 0.335 0.018 �0.054, 0.090 0.020 �0.065, 0.105

2 493 0.935 0.608, 1.262 0.331 0.144, 0.519 0.192 0.094, 0.289 0.172 0.058, 0.286

Per-allele increase 2,981 0.433 0.275, 0.592 0.173 0.083, 0.262 0.081 0.034, 0.129 0.074 0.019, 0.129

P for trend <0.0001 <0.0001 0.001 0.009

Women

No. of FTO adiposity
alleles

0 448 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 543 �0.183 �0.741, 0.376 0.015 �0.196, 0.225 �0.076 �0.441, 0.289 0.073 �0.074, 0.219

2 173 0.310 �0.474, 1.094 0.145 �0.155, 0.445 0.121 �0.391, 0.632 �0.011 �0.217, 0.194

Per-allele increase 1,164 0.077 �0.294, 0.449 0.058 �0.083, 0.120 0.012 �0.089, 0.114 0.012 �0.085, 0.110

P for trend 0.68 0.42 0.81 0.80

Abbreviations: BMI, body mass index; CI, confidence interval; FTO, fat mass and obesity-associated gene; GHQ, General Health Questionnaire.
a Mean BMI (weight (kg)/height (m)2) across 4 repeated clinical examinations conducted over a 19-year follow-up period.
b Number of times (range, 0–4) a participant was found to be overweight (BMI 25.0–29.9) or obese (BMI �30) in 4 examinations conducted over

a 19-year follow-up period. The analysis of overweight did not include obese participants and was therefore based on 2,473 men and 861 women.
c Number of times (range, 0–4) a participant was designated a GHQ ‘‘case’’ in 4 examinations conducted over a 19-year follow-up period. GHQ

score was used as the measure of common mental disorders.
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ψ̂women = 0.012/0.077 = 0.16
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Special case: binary variables

I When Z , X and Y are binary, ψ is the risk difference

p(Y1 = 1|U)− p(Y0 = 1|U) = p(Y1 = 1)− p(Y0 = 1)

and the TS estimate can be written as

p(Y = 1|Z = 1)− p(Y = 1|Z = 0)

p(X = 1|Z = 1)− p(X = 1|Z = 0)

I The numerator is the ITT effect, as a risk difference
I The denominator is equal to 1 if ‘compliance’ is 100%
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TS-estimation for the Sommer and Zeger (1991) study
EFFICACY FROM CLINICAL TRIALS 47 

Table I. Mortality rates in control and programme villages, months 
4-12, stratified by compliance 

Mortality 
Study group Complied Children Deaths (per 1OOO) 

- Control 11,588 74 6.4 
Treatment 12,094 46 3.8 

Yes 9,675 12 1.2 
No 2,4 19 34 14.1 

- 

2419 children from the treatment group who did not receive vitamin A, 34 or 1.4 per cent died. 
This rate is twice as high as in the control group (0.64 per cent). The ability to receive a vitamin A 
capsule strongly predicts chance of survival. This is exactly the situation where a comparison of 
compliers in the two groups can lead to substantially biased estimates of efficacy. This study did 
not involve a placebo and so even the direct but potentially biased estimate of biologic efficacy is 
not possible. Tarwotjo et ~ 1 . ~  first proposed the method developed in the next section as an 
alternative. 

3. ESTIMATING EFFICACY 

We can display data from an RCT with two groups and a binary response in a 2 x 2 x 2 table as 
in Table 11. In the treatment subtable (right), we can classify correctly all persons since we know 
both compliance and outcome. We observe the vector (no,, n o , ,  nlo,  n l l ) .  In a control group 
without placebo, we know only the response. Since there was no placebo, the compliance variable 
was not observable. Hence, we know only the marginal totals 

and ml, = mIo + m l l .  mo, = moo + mol 

The approach is to infer the missing elements in the left table and then to compare the observed 
risk of mortality for the compliers in the treatment group with the inferred risk for the compliers 
in the control group. The randomization provides the basis for obtaining unbiased estimates of all 
the entries of the (left) table for the control group, under the assumption that the compliance 
profiles are the same in the two groups as they would be if control and treatment regimens 
presented the same compliance challenge. Specifically, such a randomized study would: 

(a) Have the same expected rate of compliance in the two study groups; 
(b) Produce non-compliant subgroups in the two study arms which had the same expected rate 

Table 111 shows a parameterization of the expected cell probabilities (defined to add to 1 in both 
the treatment and control subtables) that incorporates these assumptions. Here y is the biologic 
efficacy; ct is the mortality rate among non-compliers, which in an RCT we can assume is the same 
in both groups; 6 is the compliance rate, also assumed to be common to both groups; and B is the 
mortality rate for compliers in the control group. 

Assumptions (a) and (b) define the situation where we can estimate efficacy by the relative risk 

of mortality, since in both arms the non-compliers receive no treatment. 

I Z = 1 for ‘randomized to vitamine A’, X = 1 for ‘took
vitamine A’, Y = 1 for ‘survived’

p(Y = 1|Z = 0) = (11588− 74)/11588

= 0.9936

p(Y = 1|Z = 1) = (12094− 12− 34)/12094

= 0.9962

p(X = 1|Z = 0) = 0

p(X = 1|Z = 1) = 9675/12094

= 0.8000

ψ̂ =
p(Y = 1|Z = 1)− p(Y = 1|Z = 0)

p(X = 1|Z = 1)− p(X = 1|Z = 0)
=

0.9962− 0.9936
0.8000− 0

= 0.0033
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The bounds vs TS-estimation

I Bounds:
−0.1946 ≤ ψ ≤ 0.0054

I TS-estimation:
ψ̂ = 0.0033

I Clearly, the TS estimate relies heavily on the assumption
of homogeneity in treatment response
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Alternative formulation of TS-estimation

I First stage: fit a ‘working’ linear regression model for X on
Z

I Create predictions X̂ from the first stage model
I Second stage: fit a ‘working’ linear regression model for Y

on X̂
I The estimate of ψ is the coefficient for X̂ in the second

stage model
I The two formulations give identical estimates when all

models are linear
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Pros and cons of the two formulations

I Advantage of the ‘ratio of slope’ formulation: can be used
when only regression slopes are available

I Advantage of the ‘prediction’ formulation: can be
generalized to allow for exposure-covariate interactions
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Limitations of TS-estimation

I TS-estimation has the advantage of being simple
I However, for non-linear (e.g. logistic) models it gives

biased estimates (Vansteelandt et al., 2011)
I at best the bias is small, but the bias can be substantial

I Therefore, we will briefly consider a more general
estimation technique called ‘G-estimation’
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G-estimation

I With G-estimation, we obtain an estimate of ψ by solving
the equation

n∑
i=1

d(Zi)(Yi − ψXi) = 0

where d(Zi) is an arbitrary function of Zi with mean 0
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Intuition behind G-estimation

n∑
i=1

d(Zi)(Yi − ψXi) = 0

I The term Y − ψX can be thought of as a prediction of the
counterfactual outcome Y0
I i.e. the outcome that we would have observed, had the

subject counterfactually received exposure level X = 0
I Under the IV assumptions, Y0 and Z are independent in

the population
I The solution to the equation above is the value of ψ for

which Y0 and Z are independent in the sample
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Analytic solution

I The equation for G-estimation has an analytic solution

ψ̂ =

∑n
i=1 d(Zi)Yi∑n
i=1 d(Zi)Xi
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Relation between TS-estimation and G-estimation

I G-estimation:

n∑
i=1

d(Zi)(Yi − ψXi) = 0

I Let Z̄ be the sample mean of Z
I TS-estimation is a special case of G-estimation with

d(Zi) = Zi − Z̄ :

n∑
i=1

(Zi − Z̄ )(Yi − ψXi) = 0

I Robins (1994) derived the most efficient choice of d(Zi),
which is more complicated
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Example

i Z X Y
1 0 25 4
2 0 26 4
3 0 27 5
4 1 26 4
5 1 27 5
6 1 29 3
7 2 25 5
8 2 27 4
9 2 29 5

ψ̂ =

∑n
i=1 d(Zi)Yi∑n
i=1 d(Zi)Xi

I Z = No. of FTO adiposity alleles, X = BMI, Y = CMD score
I Use G-estimation to estimate ψ for the data above, with

d(Zi) = Zi − Z̄ . Interpret the result
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Solution

i Z X Y Z − Z̄ (Z − Z̄ )Y (Z − Z̄ )X
1 0 25 4 -1 -4 -25
2 0 26 4 -1 -4 -26
3 0 27 5 -1 -5 -27
4 1 26 4 0 0 0
5 1 27 5 0 0 0
6 1 29 3 0 0 0
7 2 25 5 1 5 25
8 2 27 4 1 4 27
9 2 29 5 1 5 29

ψ̂ =

∑n
i=1(Zi − Z̄ )Yi∑n
i=1(Zi − Z̄ )Xi

= 1/3

I For every units increase in BMI, the mean CMD score is
estimated to increase with 1/3 units
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TS-estimation for the example (in R)
I First stage: linear regression model for X on Z :

> fit1 <- lm(formula=X~Z)
> summary(fit1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 26.2778 0.7982 32.921 6.18e-09 ***
Z 0.5000 0.6183 0.809 0.445

I Second stage: linear regression model for Y on Z :
> fit2 <- lm(formula=Y~Z)
> summary(fit2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1667 0.3900 10.683 1.38e-05 ***
Z 0.1667 0.3021 0.552 0.598

I Ratio of the two regression slopes:

ψ̂ = 0.1667/0.5 = 0.3333
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TS-estimation for the example (in Stata)
I First stage: linear regression model for X on Z :

. regress X Z
------------------------------------------------------------------------------

X | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

Z | .5 .618284 0.81 0.445 -.9620094 1.962009
_cons | 26.27778 .7982012 32.92 0.000 24.39033 28.16522

------------------------------------------------------------------------------

I Second stage: linear regression model for Y on Z :
. regress Y Z
------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

Z | .1666667 .302109 0.55 0.598 -.5477076 .8810409
_cons | 4.166667 .390021 10.68 0.000 3.244413 5.08892

------------------------------------------------------------------------------

I Ratio of slopes: ψ̂ = 0.1667/0.5 = 0.3333
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TS-estimation vs G-estimation

I For linear models, both TS-estimation and G-estimation
gives unbiased estimates

I For non-linear (e.g. logistic) models, TS-estimation gives
biased estimates

I G-estimation can be used in non-linear (e.g. logistic)
models to obtain unbiased estimates

I This is beyond the scope of the course; we refer to
Vansteelandt et al. (2011)
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Case-control studies: testing

U

�� ��
Z // X // Y

I To test for a causal effect of X on Y we test if Z and Y are
associated

I This is straight-forward under case-control sampling as
well
I e.g. by a logistic regression model
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Case-control studies: estimation

I Can use TS-estimation with a logistic regression model for
the outcome (second stage)
I gives (more or less) biased estimates, due to non-linear

model
I G-estimation gives unbiased estimates
I See Vansteelandt et al. (2011) and Bowden and

Vansteelandt (2011)
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Time-to-event outcomes: testing

U

�� ��
Z // X // T

I To test for a causal effect of X on T we test if Z and T are
associated

I This is straight-forward
I e.g. by a Cox proportional hazards (PH) model
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Time-to-event outcomes: estimation

I Can use TS-estimation with a Cox PH model for the
outcome (second stage)
I but gives (more or less) biased estimates, due to non-linear

model
I G-estimation gives unbiased estimates
I See Martinussen et al. (2018)

82 / 88

Weak instruments

U

�� ��
Z // X // Y

I Assumption 1: the IV is associated with the exposure
I In practice, the association may be more or less strong
I When the association is weak, we say that the IV is a weak

instrument
I In large samples, it doesn’t matter that the IV is a weak

instrument; it still produces valid inference
I In small samples, weak instruments create two problems:

I low power for hypothesis testing
I bias for estimation
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Allele scores

I The weak-instrument problem can be alleviated by
combining several genes/alleles into one ‘allele score’

I The association with the allele score is often stronger than
the association with each separate allele

I It is important to consider the IV assumptions for each
separate allele
I if the IV assumptions hold for each separate allele, then

they also hold for the allele score
I if the IV assumptions are violated for at least one separate

allele, then they are also violated for the allele score
I Burgess and Thompson (2013) provide an overview of the

method
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Statistical uncertainty

I All estimators that we have discussed are asymptotically
normal

I This means that we can assess statistical uncertainty with
the usual 95% CI estimate± 1.96× standard error

I To obtain the standard error we can
I stack the estimating equations and apply the sandwich

formula, or
I bootstrap
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Software

I TS-estimation in linear models:
I ivreg function in R package AER
I ivmodel function in R package ivmodel
I sem function in R package sem
I systemfit function in R package systemmfit
I ivregress command in Stata

I TS-estimation in log-linear models:
I ivpoisson command in Stata

I TS-estimation and G-estimation in linear, log-linear, logistic
and Cox PH models:
I R package ivtools
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Summary

U

�� ��
Z // X // Y

I IV methods can be used to test for/estimate causal effects
in the presence of unmeasured confounding

I Hypothesis testing is straight-forward, whereas effect
estimation requires more care

I All IV methods rely on (variations of) the IV assumptions
I Some IV methods rely on additional (parametric

assumptions) a well
I In real applications, try to verify all assumptions to the

extent possible
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