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Randomized trials

» In randomized trials, the exposure-outcome association
can be given a causal interpretation

» E.g. the statistical risk ratio

pY = 11X = 1)
p(Y=1X=0)

is equal to the causal risk ratio

p(Y;=1)
p(Yo =1)

The aim of epidemiological research

» Most epidemiological research questions are centered
around a particular exposure and a particular outcome

» Typically, we would like to know if the exposure has a
causal effect on the outcome

» hypothesis testing

> If there is a causal effect, we would also like to know its
magnitude

> effect estimation
X

Observational studies

> In observational studies, the exposure-outcome
association is usually confounded and cannot be given a
causal interpretation
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Confounder control
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» Measured confounders can be controlled for, e.g. in a
regression model

» But unmeasured confounders may still bias the results
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Outline

Hypothesis testing
Verifying the IV assumptions
The RCT with non-compliance

Effect estimation
Non-parametric bounds
Causal linear models

Additional points

Instrumental variable methods

> Instrumental variable (IV) methods is a collection of
methods with a remarkable property

» They can be used to test for/estimate causal effects in
the presence of unmeasured confounding

» |V methods have a long history in econometrics

» They have more recently become popular in epidemiology

» in particular through Mendelian randomization (MR)
studies, where the IV is a (set of) gene(s)

Outline

Hypothesis testing



Motivating example

» Kivimaki et al. (2011) aimed to study if obesity causes
common mental disorders (CMD)

» Obesity was measured with body mass index (BMI)

» CMD was measured with a continuous score, which was
subsequently dichotomized into ‘high’ and ‘low’

» Both BMI and CMD were measured on 4 occasions during
follow-up

» The exposure was defined as mean BMI across the 4
occasions

» The outcome was defined as the number of times, out of
the 4 occasions, that the subject had a high CMD score

The FTO gene

» The study participants were genotyped on the fat mass
and obesity (FTO) gene
» It has previously been shown that this gene affects BMI
> Kivimaki et al. (2011) used the FTO gene as an
instrumental variable (1V) in the analysis
» a Mendelian randomization (MR) study

The study in a DAG

>

U
BMI - CMD
» A huge potential for confounding, e.g. by
age
sex

>
>
>
>

socioeconomic status (SES)
comorbid conditions
etc

The IV assumptions

» |V methods can be used to test for/estimate causal effects
in the presence of unmeasured confounding

vyy

No free lunch - all IV methods rely on strong assumptions:
1. The IV is associated with the exposure
2. The IV affects the outcome only through the

exposure

» 3. The association between the IV and the outcome is
unconfounded

vy

(Alternative formulations occur)
Display the IV assumptions in a DAG



Solution

» 1. The IV is associated with the exposure
> e.g. the IV affects the exposure:

U
Z X Y
> e.g. the IV and the exposure have common causes:
w U
Z X Y

» For convenience we will only consider the upper DAG

» all methods that we consider are valid for the lower DAG as
well

Solution, cont’d

» 3. The association between the IV and the outcome is

unconfounded

)

Solution, cont'd

» 2. The IV affects the outcome only through the

exposure
/ ;
Z X Y

\H_/

The IV against the outcome
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Z X Y

» Suppose that we observe a statistical association between
Z and Y in the DAG above

» Is it then possible that X has no causal effecton Y ?



Solution

U
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V4 X Y

» No. If X has no causal effect on Y, then there is no open
path between Z and Y

» Hence, if X has no causal effecton Y, then Zand Y
should be independent

Generality of the approach

X/U\Y

» This IV hypothesis test is completely general in that it
allows for

> arbitrary types of variables (binary, categorical, continuous,
time-to-event etc)

> arbitrary statistical methods for testing (non-parametric test,
x2-test, t-test, regression model etc)

> arbitrary sampling schemes (cross-sectional, prospective,
retrospective etc)

» ... as long as the three IV assumptions hold

Hypothesis testing with 1Vs
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Z X Y

» And the other way around: if Z and Y are associated,
then X has a causal effect on Y
» This suggests a very simple strategy for hypothesis testing

» check if the Z is associated with Y
» if it is, then conclude that X has a causal effect on Y

Results from the Kivimaki et al. (2011) study

Table 2. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Body Mass Index, Overweight, Obesity, and Common Mental
Disorders From 4 Repeated Assessments in Men and Women, Whitehall Il Study, 1985-2004

Predictor Parpl‘izi:;nls B Overweight® Obesity” Mental Disorders®
95% CI B 95% ClI B 95% CI B 95% ClI
Men
No. of FTO adiposity
alleles
0 1,046 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent
1 1,442 0.283 0.039, 0.526 0.200 0.064, 0.335 0.018 —-0.054, 0.090 0.020 -0.065, 0.105
2 493 0.935 0.608, 1.262 0.331 0.144, 0.519 0.192  0.094, 0.289 0.172  0.058, 0.286
Per-allele increase 2,981 0.433 0.275, 0.592 0.173 0.083, 0.262 0.081  0.034,0.129 0.074  0.019,0.129
P for trend <0.0001 <0.0001 0.001 0.009
Women
No. of FTO adiposity
alleles
0 448 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent
1 543 —0.183 -0.741,0.376 0.015 -0.196,0.225 —-0.076 -0.441,0.289 0.073 -0.074,0.219
2 173 0.310  —0.474, 1.094 0.145 —-0.155, 0.445 0.121 -0.391,0.632 | —0.011 -0.217,0.194
Per-allele increase 1,164 0.077  —0.294, 0.449 0.058 —0.083, 0.120 0.012 —-0.089, 0.114 0.012 —-0.085,0.110
P for trend 0.68 0.42 0.81 0.80

Abbreviations: BMI, body mass index; Cl, confidence interval; FTO, fat mass and obesity-associated gene; GHQ, General Health Questionnaire.

2 Mean BMI (weight (kg)/height (m)?) across 4 repeated clinical examinations conducted over a 19-year follow-up period.

© Number of times (range, 0—4) a participant was found to be overweight (BMI 25.0-29.9) or obese (BMI >30) in 4 examinations conducted over
a 19-year follow-up period. The analysis of overweight did not include obese participants and was therefore based on 2,473 men and 861 women.

© Number of times (range, 0—4) a participant was designated a GHQ “case” in 4 examinations conducted over a 19-year follow-up period. GHQ
score was used as the measure of common mental disorders.




Conclusion

> If we believe that the FTO gene is a valid IV, then there
appears to be a causal effect of BMI on CMD for men, but
possibly not for women

» What could be the mechanisms behind such causal effect?
Biological? Sociological?

Testability of the assumptions

> Like all statistical methods, IV methods rely on
assumptions

» Ideally these assumptions should be tested and verified
before the results are trusted

> In contrast to assumptions in ‘ordinary’ statistical models,
the IV assumptions are to a large extent untestable

Outline

Verifying the IV assumptions

Assumption 1

> 1. The IV is associated with the exposure
U

/N

Z X Y

» Easy to verify with data



Results from the Kivimaki et al. (2011) study Assumptions 2 and 3

Table 2. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Body Mass Index, Overweight, Obesity, and Common Mental >
Disorders From 4 Repeated Assessments in Men and Women, Whitehall Il Study, 1985-2004 2' The IV affeCts the OUtcome on Iy th roug h the
} ; Common exposure
Predictor panoiot Bur Overweight” Obesity” Mental Disorders® P
icipants 95% CI B 95% Cl B 95% CI B 95% CI H H H
d ‘ = g » 3. The association between the IV and the outcome is
len
No.of FTO adiposiy unconfounded
0 1,046 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent
1 1,442 0.283 0.039, 0.526 0.200 0.064, 0.335 0.018 -0.054, 0.090 0.020 -0.065, 0.105 V
2 493 0.935 0.608, 1.262 0.331 0.144, 0.519 0.192  0.094, 0.289 0.172  0.058, 0.286
Per-allele increase 2,981 0.433 0.275, 0.592 0.173 0.083, 0.262 0.081 0.034, 0.129 0.074  0.019,0.129
P for trend <0.0001 <0.0001 0.001 0.009
Women
No. of FTO adiposity U
alleles
0 448 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent
1 543 0.183 0.741, 0.376 0.015 0.196, 0.225 0.076 —0.441,0.289 0.073 -0.074,0.219
2 178 0.310 0.474, 1.094 0.145 0.155, 0.445 0.121 0.391, 0.632 0.011 0.217,0.194
Per-allele increase 1,164 0.077  —0.294, 0.449 0.058 —-0.083, 0.120 0.012 -0.089, 0.114 0.012 -0.085,0.110 Z X Y
P for trend 0.68 0.42 0.81 0.80

Abbreviations: BMI, body mass index; Cl, confidence interval; FTO, fat mass and obesity-associated gene; GHQ, General Health Questionnaire.

2 Mean BMI (weight (kg)/height (m)?) across 4 repeated clinical examinations conducted over a 19-year follow-up period.

b Number of times (range, 0—4) a participant was found to be overweight (BMI 25.0-29.9) or obese (BMI >30) in 4 examinations conducted over
a 19-year follow-up period. The analysis of overweight did not include obese participants and was therefore based on 2,473 men and 861 women.

SC;:L&:Ze::ef;ir:sefh(erarr:‘g:.stz:)(; E::igg:ri;v:‘zrj;zg:fetf a GHQ “case” in 4 examinations conducted over a 19-year follow-up period. GHQ > M uc h h ard e r, becau se th e co nfO u nde rs U are (at |eaSt
partially) unmeasured

Results from the Kivimaki et al. (2011) study Results from the Kivimaki et al. (2011) study, contd

Table 3. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Factors Potentially Confounding

the Relation Between Obesity and Common Mental Disorders in Men and Women, Whitehall Il Study, 1985-2004 Women
Maximum no. of 448 543 173
No. of FTO Adiposity Alleles participants
croaselne e 0 1 2 P Value Age, years 44.0 (6.1) 44.5 (5.8) 447 (5.9)| 0.13
No. % Mean(SD) No. % Mean(SD) No. % Mean (SD) Marital status (married) 60.5 57.3 61.9 0.44
Men Socioeconomic position
Maximum no. of participants 1,046 1,442 493 High 15.2 16.1 19.7 0.20
Age, years 44.0 (6.1) 43.7 (5.9) 44.0 (5.7) | 0.75 Intermediate 44.0 46.5 49.7
Marital status (married) 82.8 84.4 82.4 0.45 Low 40.9 375 30.6
Socioeconomic position Chronic disease 104 9.2 8.8 0.78
High 39.6 415 44.4 0.39 Prevalent coronary 0.4 0.4 0.0 0.69
Intermediate 54.8 537 513 heart disease
Low 56 49 43 Prevalent diabetes 0.5 0.4 0.0 0.69
Chronic disease 83 108 97 042 Use of psychotropic drugs 4.0 4.4 41 0.94
Prevalent coronary 0.8 0.6 0.8 0.75 Highgﬁgnﬂp“onb 30 35 58 024
heart disease
Prevalent diabetes 05 06 08 0.72 Physical inactivity 41.3 38.0 39.3 0.59
Use of psychotropic drugs 2.3 2.0 22 0.88 Current smoking 183 73 17 0.20
High alcohol consumption® 16.4 17.4 20.6 0.13 Abbreviations: FTO, fat mass and obesity-associated gene; SD, standard deviation.
Physical inactivity 23.8 19.8 226 0.051 2 >21 alcohol units per week.

b 14 alcohol units per week.

Current smoking 10.4 11.9 9.2 0.20




Conclusion

> In the Kiviméaki et al. (2011) study, the IV is independent of
all observed predictors for the outcome

» What assumption(s) does this support?

Meiosis

“ ) ~
Interphase | peiosis | Eﬁ z]
Homolegous Meiosis Il U] )

Chromesomes

> In meiosis, the child randomly receives one allele from the
father and one allele from the mother
» So in this sense, the child’s alleles are randomized
conditional on the parents’ genes
» thus the term ‘Mendelian randomization’

» But in typical MR studies we have not measured the
parents’ genes, so the analysis cannot condition on these

» As a consequence, MR studies may suffer from problems
due to parental genetic effects and population mixture

Assumption 3 in MR studies

» The association between the IV and the the outcome is

unconfounded

> |If genes were randomized, then this assumption would be
true

» Are genes randomized?

)

Z

Parental genetic effects

» The parents’ genes clearly affect the child’s genes
» Suppose that the parents’ genes also affect the child’s

outcome
> e.g. by affecting how the parents behave to the child
PG
)
Z X Y

» Then assumption 3 would be violated



Population mixture

» Suppose that there is population mixture

> i.e. the study population consists of different ethnic groups
» The genetic IV may have different distributions in different

ethnic groups
> Suppose that the ethnicity also affects the outcome
> e.g. due to social or cultural differences, some ethnic

groups are more likely to develop the outcome than other

E
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V4 X Y
» Then assumption 3 would be violated

A special application of 1Vs

» The IV assumption are crucial, but too a large extent
untestable

» There is one special application of 1Vs, in which the IV
assumptions are (almost) guaranteed to hold

» This is the randomized controlled trial (RCT) with
non-compliance

Outline

The RCT with non-compliance

The basic scenario

» Zis the ‘assigned treatment level

» Z =1 for ‘assigned to treatment’, Z = 0 for ‘assigned to no
treatment’

> X is the ‘treatment level actually taken’
> X =1 for ‘took the treatment’, X = 0 for ‘did not take the
treatment’
» Y is the outcome of interest

» U is the set of all factors that may affect both the outcome,
and the treatment level the subject decides to take

> e.g. age, sex, health status
» Simplifying assumption:
> no blinding
> ‘treatment’ vs ‘no treatment’, not ‘treatment’ vs ‘placebo’



The DAG for the RCT

U
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V4 X Y

» The treatment assignment Z can be viewed as an IV

Assumption 2

» 2. The IV affects the outcome only through the
exposure

Z/“T/AU\Y

\H_/

» In RCT’s, a direct effect of Z on Y is possible in principle,
but unlikely in practice

Assumption 1

» 1. The IV is associated with the exposure

SN\

V4 X Y

» This assumption holds, since the decision to take the
treatment or not is influenced by the assignment

Assumption 3

> 3. The association between the IV and the outcome is
unconfounded

4

\

» This assumption holds, due to randomization of assigned
treatment level

Z Y

&\



The AT analysis

X/U\Y

» One possible method to analyze RCTs with
non-compliance is the ‘as-treated’ (AT) analysis

» In this analysis, one tests for an association between
‘treatment actually taken’ (X) and the outcome (YY)

» This analysis is typically confounded (by U), and does not
give a causal effect

Outline

Effect estimation

The ITT analysis

U

SN\

Z X Y

» The most common method to analyze RCTs with
non-compliance is the ‘intention-to-treat’ (ITT) analysis

» In this analysis, one tests for an association between
‘assigned treatment level’ (Z) and the outcome (YY)

» This is exactly the IV hypothesis test we discussed
previously

» The ITT analysis proves whether the treatment has a
causal effect on the outcome

Outline

Effect estimation
Non-parametric bounds



Motivating example

» Sommer and Zeger (1991) considered a RCT of vitamin A
supplement in northern Sumatra

> In the treatment group, oral doses of vitamin A were
administered at 3 and 6 months

> At 12 months, mortality was determined

The IV assumptions are not enough for estimation

> We have seen that we can test for a causal exposure
effect, assuming that the IV assumptions hold

» Balke and Pearl (1997) showed that the IV assumptions
are not enough to estimate the causal exposure effect

» However, they showed that the causal effect can
sometimes be bounded
> i.e. that it may be possible to provide a range of possible
values, given the observed data

Results from the Sommer and Zeger (1991) study

Table I. Mortality rates in control and programme villages, months
4-12, stratified by compliance

Mortality

Study group Complied  Children Deaths (per 1000)
Control — 11,588 74 64
Treatment — 12,094 46 38
Yes 9,675 12 12
No 2,419 34 141

An intent-to-treat analysis was performed to estimate the programmatic effectiveness of the
vitamin A distribution. The mortality in the two groups from month 4 (following completion of
the first distribution cycle) to month 12 was compared. As shown in Table I, there were 46 deaths
out of 12,094 children (0.38 per cent) in the villages randomized to vitamin A, as opposed to
74 out of 11,588 (0.64 per cent) in control villages. The effectiveness relative risk is estimated by
0-38/0-64 = 059 (95 per cent confidence interval: 0-41 to 0-86). Hence, the data suggest roughly
a 40 per cent reduction in mortality associated with the vitamin A distribution programme.

» This the effect of ‘treatment assignment’ (the ITT effect),
not the effect of treatment

» What is the treament effect?

Notation

» Suppose that Z, X, and Y are binary

> Let p(Y; = 1) be the counterfactual probability of the
outcome, had everybody been exposed

> Let p(Yp = 1) be the counterfactual probability of the
outcome, had everybody been unexposed

> Let ¢ be the causal risk difference

b=p(Y1=1)—p(Yo=1)

» Balke and Pearl (1997) showed that v is not estimable
even if the IV assumptions hold



Bounds

» Define pyx=p(Y =y, X =x|Z=2)
» Balke and Pearl (1997) showed that

poo.o + P11 — 1 1 —p1oo = poi1
poo.1 +pi11 — 1 1~ po1.0 — Pio.1
p11.0 +poor — 1 1 —=po1.0 —Pioo

Poo.0 +Pi1.0 — 1 1—=po11—pios

Y 9p00.0 + D110 + Proa F ping — 2 Sp<ming g 2po1.0 ~ P10.0 — P10.1 — P11.1
P00.0 + 2p11.0 + Poo.1 + por1 — 2 2 — po1.0 ~ 2P10.0 — Poo.1 — PolL.1
P10.0 + 1o + 2P00.1 + prr: — 2 2 — pioo = Pi1.0 — 2P01.1 — Pio.1
P00.0 + Po1.o + Poo.1 + 2p111 — 2 2 — poo.o — Po1.o — Por.1 — 2Pio.1

» (Note: the right inequality sign is turned the wrong way in
Balke and Pearl (1997))

» All components in the lower and upper bounds are
estimable

Bounds in the Sommer and Zeger (1991) study

—0.1946 < ¢ < 0.0054

» The bounds include the value 0, thus it is possible that
there is no causal effect of vitamin A

» But we observed an ITT effect! Doesn’t the presence of an
ITT effect prove that there is a causal treatment effect?

» The presence of an ITT effect implies that there is a causal
effect for some subjects in the population

» But the average (population) causal effect may still be 0, if
there is heterogeneity in treatment response

> i.e. the treatment is harmful for some subjects but not for
other subjects (Balke and Pearl, 1997)

The Sommer and Zeger (1991) study revisited

Table I. Mortality rates in control and programme villages, months
4-12, stratified by compliance

Mortality

Study group Complied Children Deaths (per 1000)
Control — 11,588 74 6-4
Treatment — 12,094 46 38
Yes 9,675 12 12
No 2,419 34 141

» Z =1 for ‘randomized to vitamine A’, X = 1 for ‘took
vitamine A’, Y = 1 for ‘survived’

» To calculate bounds for the causal risk difference we need
Pyx.z for all combinations of y, x and z

Pooo = 74/11588 =0.0064 Poo.1 = 34/12094 = 0.0028
Poto = 0 Po11 = 12/12094 = 0.0010
proo = (11588 —74)/11588 =0.9936 pi1o.1 = (2419 —34)/12094 = 0.1972
pi1o = 0 p111 = (9675 —12)/12094 = 0.7990

Bounds in the Sommer and Zeger (1991) study, contd

—0.1946 < ¢ < 0.0054

» The bounds include negative values, thus it is possible that
causal effect of vitamin A is negative

> even though the ITT effect is positive

» Again, this could happen if there is a strong heterogeneity
in treatment response



Bounds vs confidence intervals

—0.1946 < ¢ < 0.0054

» The bounds should not be confused with a confidence
interval

» A confidence interval quantifies the uncertainty due to
sampling variability
> decreases with sample size

» The bounds quantify the uncertainty due to unmeasured
confounding

> does not decrease with sample size

> In practice; estimate the lower and upper bound, and
compute confidence intervals for the estimates

Outline

Effect estimation

Causal linear models

Limitations of the bounds

» The bounds show how much (or little!) we can say about
the causal effect, without further assumptions than the IV
assumptions

» But sometimes additional assumptions are reasonable,
such as (approximate) homogeneity in treatment response

» Also, the bounds are difficult to apply for non-binary
variables

The causal linear model

E(Yx|U) = vx + f(U)

» f(U) is an unspecified (linear or non-linear) function of U



Interpretation of ¢

> 1 is the conditional causal effect of X on Y, given U

» |t measures the increase in the mean of Y, when X is
increased with 1 unit, for those with a given value of U

E(Yxa|U) = E(YX|U) = {¢(x + 1) + f(U)} = {yx + {(U)} = ¢

Assumptions in the causal linear model

E(Yy|U) = ¥x + F(U)

» Linear effectof Xon Y
» The effect of X is the same across levels of U

> no effect modification by U
> aka no interaction between X and U on the linear scale
> aka homogeneity in treatment response

Alternative interpretation of v

» Because the mean difference is collapsible, v is also the
marginal causal effect of X on Y

> It measures the increase in the mean of Y, when X is
increased with 1 unit, for the whole population

E(Yer1) — E(Ys)
= E{E(Yxs1U)} — E{E(,|U)}
— E{E(Yxs1]U) — E(Yx|U)}
=

TS-estimation

E(Yy|U) = vx + f(U)

> A convenient way to estimate v is to use ‘two-stage’ (TS)
estimation

» First stage: fit a ‘working’ linear regression model for X on
Z

> Second stage: fit a ‘working’ linear regression model for Y
on”Z

» Estimate ¢ as the ratio of the two regression slopes

> TS-estimation gives an unbiased estimate of ¢ regardless
of whether the working models are correct or not
> provided that the IV assumptions hold, and the causal
linear model is correct
> doesn’t matter whether we assume linear, dominant or
recessive effect of genetic alleles in working models



Results from the Kivimaki et al. (2011) study

Table 2. Associations of Fat Mass and Obesity-Associated (FTO) Genotype With Body Mass Index, Overweight, Obesity, and Common Mental
Disorders From 4 Repeated Assessments in Men and Women, Whitehall I Study, 1985-2004

Predictor

No. of FTO adiposity

alleles
0 1,046
1 1,442
2 493
Per-allele increase 2,981
P for trend

Panicipanls

BMI? Overweight® Obesity®
95% ClI B 95% ClI B 95% CI
Men
0.00 Referent 0.00 Referent 0.00 Referent

0.283 0.039, 0.526 0.200 0.064, 0.335 0.018 —0.054, 0.090
0.935 0.608, 1.262 0.331 0.144,0.519 0.192  0.094, 0.289

Common

Mental Disorders®

B

0.00
0.020
0.172

95% ClI

Referent
—0.065, 0.105
0.058, 0.286

0.433 0.275, 0.592 0.173 0.083, 0.262 0.081  0.034,0.129 0.074 | 0.019,0.129

<0.0001 <0.0001 0.001

Dmen = 0.074/0.433 = 0.17

Special case: binary variables

0.009

» When Z, X and Y are binary, v is the risk difference

p(Yr =1U) = p(Yo = 1|U) = p(Y1 = 1) = p(Yo = 1)

and the TS estimate can be written as

plY =1[Z2=1) - p(Y =1[2=0)

p(X=11Z=1)—p(X =1Z=0)

» The numerator is the ITT effect, as a risk difference
» The denominator is equal to 1 if ‘compliance’ is 100%

Results from the Kivimaki et al. (2011) study, contd

Women
No. of FTO adiposity
alleles

0 448 0.00 Referent 0.00 Referent 0.00 Referent 0.00 Referent

1 543 —0.183 -0.741,0.376 0.015 -0.196,0.225 —0.076 —0.441,0.289 0.073 -0.074,0.219

2 178 0.310  —0.474, 1.094 0.145 -0.155, 0.445 0.121 -0.391,0.632 -0.011 -0.217,0.194
Per-allele increase 1,164 —0.294, 0.449 0.058 -0.083, 0.120 0.012 -0.089, 0.114 -0.085, 0.110

P for trend 0.68 0.42 0.81 0.80

Abbreviations: BMI, body mass index; Cl, confidence interval; FTO, fat mass and obesity-associated gene; GHQ, General Health Questionnaire.

@ Mean BMI (weight (kg)/height (m)?) across 4 repeated clinical examinations conducted over a 19-year follow-up period.

P Number of times (range, 0—4) a participant was found to be overweight (BMI 25.0-29.9) or obese (BMI >30) in 4 examinations conducted over
a 19-year follow-up period. The analysis of overweight did not include obese participants and was therefore based on 2,473 men and 861 women.

© Number of times (range, 0—4) a participant was designated a GHQ “case” in 4 examinations conducted over a 19-year follow-up period. GHQ
score was used as the measure of common mental disorders.

Dwomen = 0.012/0.077 = 0.16

TS-estimation for the Sommer and Zeger (1991) study

Table I. Mortality rates in control and programme villages, months
4-12, stratified by compliance

Mortality

Study group Complied Children Deaths (per 1000)
Control — 11,588 74 64
Treatment — 12,094 46 38
Yes 9,675 12 12
No 2,419 34 141

» 7 =1 for ‘randomized to vitamine A’, X = 1 for ‘took
vitamine A’, Y = 1 for ‘survived’

Y=1|Z=0) = (11588 —74)/11588
P 12=0) - (()9936 )/ p(X=1Z=0) = 0
- X=11Z=1) = 9675/12094
p(Y=1Z=1) = (12094 — 12 — 34)/12094 P | ) /
0.8000
= 0.9962

~ p(Y=1Z=1)—p(Y=1/Z=0) 0.9962—0.9936
VS X =TZ=T)—p(X=1Z=0) _ 08000_0 _ 0003




The bounds vs TS-estimation

» Bounds:
—0.1946 < ¢ < 0.0054

» TS-estimation: A
1 = 0.0033

» Clearly, the TS estimate relies heavily on the assumption
of homogeneity in treatment response

Pros and cons of the two formulations

» Advantage of the ‘ratio of slope’ formulation: can be used
when only regression slopes are available

» Advantage of the ‘prediction’ formulation: can be
generalized to allow for exposure-covariate interactions

Alternative formulation of TS-estimation

> First stage: fit a ‘working’ linear regression model for X on
V4

> Create predictions X from the first stage model

> Secpnd stage: fit a ‘working’ linear regression model for Y
on X

> The estimate of ¢ is the coefficient for X in the second
stage model

» The two formulations give identical estimates when all
models are linear

Limitations of TS-estimation

» TS-estimation has the advantage of being simple

» However, for non-linear (e.g. logistic) models it gives
biased estimates (Vansteelandt et al., 2011)

> at best the bias is small, but the bias can be substantial

» Therefore, we will briefly consider a more general
estimation technique called ‘G-estimation’



G-estimation

> With G-estimation, we obtain an estimate of ¥ by solving
the equation

> d(Z)(Yi - ¢X) =0
i=1

where d(Z;) is an arbitrary function of Z; with mean 0

Analytic solution

» The equation for G-estimation has an analytic solution

5o Slid2)Y,
S d(Z)X

Intuition behind G-estimation

n

> d(Z)(Yi—vX) =0

i=1

> The term Y — ¢ X can be thought of as a prediction of the
counterfactual outcome Yy

> i.e. the outcome that we would have observed, had the
subject counterfactually received exposure level X =0

» Under the IV assumptions, Yy and Z are independent in
the population

» The solution to the equation above is the value of v for
which Yy and Z are independent in the sample

Relation between TS-estimation and G-estimation

» G-estimation:

n

> d(Z)(Yi—vX) =0
i=1
> Let Z be the sample mean of Z
> TS-estimation is a special case of G-estimation with
d(z)=2z -2

n

Y (Z—2)(Yi—9X)=0

i=1

» Robins (1994) derived the most efficient choice of d(Z)),
which is more complicated



Example Solution

7 ox vy i Z X Y Z-Z (Z-2)Y (Z-2)X

1 0 25 4 4 25
; 8 gg j 2 0 26 4 - 4 26
3 0 27 = 3 0 27 5 - 5 27
4 1 26 4 1/3:2,”:1d(2,-)Yf 4 1 26 4 0 0 0
5 1 27 5 i1 d(Z)X; 5 1 27 5 0 0 0
6 1 29 3 6 1 29 3 0 0 0
> o o & 7 2 25 5 1 5 25
8 o o7 4 8 2 27 4 1 4 27
o o 29 & 9 2 29 5 1 5 29

> Z = No. of FTO adiposity alleles, X = BMI, Y = CMD score po &=y,

n
» Use G-estimation to estimate v for the data above, with >i=1(Zi—2)X;

d(Zj) = Zi — Z. Interpret the result > For every units increase in BMI, the mean CMD score is

estimated to increase with 1/3 units

TS-estimation for the example (in R) TS-estimation for the example (in Stata)
> First stage: linear regression model for X on Z: > First stage: linear regression model for X on Z:
> fitl <- Im(formula=X~Z) . regress X 2
> summary (£itl)
Coefficients: X | Coef std. Err t P>t |
Estimate Std. Error t wvalue Pr(>|t})  _____ S
(Intercept) 26.2778 0.7982 32.921 6.18e-09 =*xx 7 | .5 . 618284 0.81 0.445
Z 0.5000 0.6183  0.809 0.445 _cons | 26.27778  .7982012 32.92  0.000
> Second stage: linear regression model for Yon2z: oo
> fit2 <- lm(formula=Y~Z) » Second stage: linear regression model for Y on Z:
> summary (fit2) . regress Y Z
Coefficients:
Estimate Std. Error t value Pr(>|t]) Yo Coef std. Err t P>t
(Intercept) 4.1667 0.3900 10.683 1.38e-05 **~  _____________ e
Z 0.1667 0.3021  0.552 0.598 7 | .1666667 .302109 0.55 0.598
» Ratio of the two regression slopes: _cons | 4.166667 .390021 10.68 0.000

i = 0.1667/0.5 = 0.3333 > Ratio of slopes: ) = 0.1667/0.5 = 0.3333



TS-estimation vs G-estimation Outline

» For linear models, both TS-estimation and G-estimation
gives unbiased estimates

» For non-linear (e.g. logistic) models, TS-estimation gives
biased estimates

» G-estimation can be used in non-linear (e.g. logistic)
models to obtain unbiased estimates

» This is beyond the scope of the course; we refer to
Vansteelandt et al. (2011)

Additional points

Case-control studies: testing Case-control studies: estimation
v » Can use TS-estimation with a logistic regression model for
/ \ the outcome (second stage)
7 X Yy » gives (more or less) biased estimates, due to non-linear
model

» To test for a causal effect of X on Y we testif Z and Y are > G-estimation gives unbiased estimates

associated » See Vansteelandt et al. (2011) and Bowden and
» This is straight-forward under case-control sampling as Vansteelandt (2011)

well

> e.g. by a logistic regression model



Time-to-event outcomes: testing

u

S\

V4 X T

» To test for a causal effect of X on T we testif Zand T are
associated

» This is straight-forward
> e.g. by a Cox proportional hazards (PH) model

Weak instruments

U

SN

Z X Y

» Assumption 1: the IV is associated with the exposure

> In practice, the association may be more or less strong

» When the association is weak, we say that the IV is a weak
instrument

» In large samples, it doesn’t matter that the IV is a weak
instrument; it still produces valid inference

» In small samples, weak instruments create two problems:

> low power for hypothesis testing
> bias for estimation

Time-to-event outcomes: estimation

» Can use TS-estimation with a Cox PH model for the
outcome (second stage)

> but gives (more or less) biased estimates, due to non-linear
model
» G-estimation gives unbiased estimates

» See Martinussen et al. (2018)

Allele scores

» The weak-instrument problem can be alleviated by
combining several genes/alleles into one ‘allele score’

» The association with the allele score is often stronger than
the association with each separate allele

» It is important to consider the IV assumptions for each
separate allele

> if the IV assumptions hold for each separate allele, then
they also hold for the allele score

> if the IV assumptions are violated for at least one separate
allele, then they are also violated for the allele score

» Burgess and Thompson (2013) provide an overview of the
method



Statistical uncertainty

> All estimators that we have discussed are asymptotically
normal

» This means that we can assess statistical uncertainty with
the usual 95% ClI estimate = 1.96 x standard error

» To obtain the standard error we can

> stack the estimating equations and apply the sandwich
formula, or
> bootstrap

Summary

U

SN\

Z X Y

» |V methods can be used to test for/estimate causal effects
in the presence of unmeasured confounding

» Hypothesis testing is straight-forward, whereas effect
estimation requires more care

» All IV methods rely on (variations of) the IV assumptions
» Some IV methods rely on additional (parametric
assumptions) a well

> In real applications, try to verify all assumptions to the
extent possible

Software

» TS-estimation in linear models:
> ivreg function in R package AER
> ivmodel function in R package ivmodel
> sem function in R package sem
> systemfit functionin R package systemmfit
> ivregress command in Stata
» TS-estimation in log-linear models:
» ivpoisson commandin Stata
» TS-estimation and G-estimation in linear, log-linear, logistic
and Cox PH models:
> R package ivtools
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