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Exchangeability

I If we have exchangeability

(Y0,Y1)q X ,

then the crude association is a causal effect
I In observational studies, we typically don’t have

exchangeability because of confounding
I If we have conditional exchangeability, given Z ,

(Y0,Y1)q X | Z ,

then controlling for Z gives a causal effect
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Conditional effects

I When Z is low dimensional (e.g. binary or categorical with
few levels), we may control for Z by stratification
I conceptually simple
I computationally simple
I does not require any modeling assumptions

I Stratification gives one causal effect for each stratum -
conditional (subpopulation) effects
I e.g. stratification on sex gives the effect for men and

women separately
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Marginal effects

I Often, it may be desirable to estimate the causal effect for
the whole population - a marginal causal effect
I easier to interpret and communicate one marginal effect

than several conditional effects
I randomized trials give marginal effects, and we may want to

make results from observational studies comparable
I we may want to consider future interventions to the whole

population, rather than to subgroups
I We will consider two methods for estimation of marginal

effects
I standardization
I inverse probability weighting
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Outline

Estimation without regression models
Standardization
Inverse probability weighting

Estimation with regression models
Standardization
Inverse probability weighting
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Outline
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Example (recapitulation)

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270 30 120 80
X = 1 180 20 60 240

I Assume conditional exchangeability, given Z , and compute
the conditional causal risk ratio, given Z , for Z = 1 and
Z = 0.

I Where in the computation do you use the assumption of
exchangeability?
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Solution

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270 30 120 80
X = 1 180 20 60 240

Conditional causal risk ratio, given Z = 0:

p(Y1 = 1|Z = 0)
p(Y0 = 1|Z = 0)

= {(Y0,Y1)q X |Z}

=
p(Y1 = 1|X = 1,Z = 0)
p(Y0 = 1|X = 0,Z = 0)

=
p(Y = 1|X = 1,Z = 0)
p(Y = 1|X = 0,Z = 0)

=
20/200
30/300

= 1
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Solution

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270 30 120 80
X = 1 180 20 60 240

Conditional causal risk ratio, given Z = 1:

p(Y1 = 1|Z = 1)
p(Y0 = 1|Z = 1)

= {(Y0,Y1)q X |Z}

=
p(Y1 = 1|X = 1,Z = 1)
p(Y0 = 1|X = 0,Z = 1)

=
p(Y = 1|X = 1,Z = 1)
p(Y = 1|X = 0,Z = 1)

=
240/300
80/200

= 2
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Solution

I Given Z = 0, the conditional causal risk ratio is equal to 1
(no effect)

I Given Z = 1, the conditional causal risk ratio is equal to 2
I Effect modification by (interaction with) Z
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The standardization formula

I If we have conditional exchangeability, given Z , then
p(Yx = 1) can be computed with the standardization
formula

p(Yx = 1) =
∑

Z

p(Y = 1|X = x ,Z )p(Z )

I Special case; binary Z :

p(Yx = 1) = p(Y = 1|X = x ,Z = 0)p(Z = 0)
+ p(Y = 1|X = x ,Z = 1)p(Z = 1)
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Proof

I Law of total probability:

p(Yx = 1) =
∑

Z

p(Yx = 1|Z )p(Z )

I Conditional exchangeability, given Z :∑
Z

p(Yx = 1|Z )p(Z ) =
∑

Z

p(Yx = 1|X = x ,Z )p(Z )

I Definition of potential outcomes:∑
Z

p(Yx = 1|X = x ,Z )p(Z ) =
∑

Z

p(Y = 1|X = x ,Z )p(Z )
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Example

p(Yx = 1) =
∑

Z

p(Y = 1|X = x ,Z )p(Z )

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270 30 120 80
X = 1 180 20 60 240

I Assume conditional exchangeability, given Z , and compute
the marginal causal risk ratio
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Solution
Z = 0 Z = 1

Y = 0 Y = 1 Y = 0 Y = 1
X = 0 270 30 120 80
X = 1 180 20 60 240

p(Y0 = 1) = {(Y0,Y1)q X |Z} =
∑

Z

p(Y = 1|X = 0,Z )p(Z )

= 30/300︸ ︷︷ ︸
p(Y=1|X=0,Z=0)

×500/1000︸ ︷︷ ︸
p(Z=0)

+ 80/200︸ ︷︷ ︸
p(Y=1|X=0,Z=1)

×500/1000︸ ︷︷ ︸
p(Z=1)

= 0.25

p(Y1 = 1) = {(Y0,Y1)q X |Z} =
∑

Z

p(Y = 1|X = 1,Z )p(Z )

= 20/200︸ ︷︷ ︸
p(Y=1|X=1,Z=0)

×500/1000︸ ︷︷ ︸
p(Z=0)

+ 240/300︸ ︷︷ ︸
p(Y=1|X=1,Z=1)

×500/1000︸ ︷︷ ︸
p(Z=1)

= 0.45

p(Y1 = 1)
p(Y0 = 1)

=
0.45
0.25

= 1.8
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Marginal effect vs. conditional effects

I In our example we had that p(Z = 1) = p(Z = 0) = 0.5
I We observed that

p(Y1 = 1|Z = 0)
p(Y0 = 1|Z = 0)

= 1

p(Y1 = 1|Z = 1)
p(Y0 = 1|Z = 1)

= 2

p(Y1 = 1)
p(Y0 = 1)

= 1.8

I The marginal effect is not generally equal to the average of
the conditional effects
I which in our example would be 1× 0.5 + 2× 0.5 = 1.5

I A special case; the marginal causal risk difference is equal
to the average of the conditional causal risk differences
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Technical note: non-collapsibility

I The marginal effect is not necessarily equal to average of
the conditional effects - even if these are constant
across levels of Z
I e.g. the causal odds ratio may be equal to 3 for both men

and women, but
I the marginal causal odds ratio may be equal to 2

I This phenomenon is sometimes referred to as
‘non-collapsibility’

I Odds ratios and hazard ratios are non-collapsible, whereas
risk difference and risk ratios are not
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Outline

Estimation without regression models
Standardization
Inverse probability weighting

Estimation with regression models
Standardization
Inverse probability weighting
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An alternative method for marginal effects

I Inverse probability weighting (IPW) is an alternative
method to compute the marginal causal effect

I Without modeling assumptions, IPW gives the same result
as standardization

I IPW may give different results, and may sometimes be
advantageous, when using regression models
I more later
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Three steps for IPW

I Step 1: for each level of the exposure X and confounders
Z , compute the probability p(X |Z )

I Step 2: assign a weight to each subject i , equal to

Wi =
1

p(Xi |Zi)

where Xi and Zi are the observed exposure and
confounders levels, respectively for subject i
I for instance, suppose that p(X = 1|Z = 1) = 0.2
I each subject with (X = 1,Z = 1) is then counted as

1/0.2 = 5 subjects in the analysis, and
I each subjects with (X = 0,Z = 1) is then counted as

1/(1− 0.2) = 1.25 subjects in the analysis
I Step 3: use p(Y = 1|X = x) in the weighted sample as an

estimate of p(Yx = 1)
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Example

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270 30 120 80
X = 1 180 20 60 240

I Step 1: for each level of the exposure X and confounders
Z , compute the probability p(X |Z )
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Solution

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270 30 120 80
X = 1 180 20 60 240

p(X = 0|Z = 0) = 300/500 = 0.6
p(X = 1|Z = 0) = 200/500 = 0.4
p(X = 0|Z = 1) = 200/500 = 0.4
p(X = 1|Z = 1) = 300/500 = 0.6
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Example

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270 30 120 80
X = 1 180 20 60 240

I Step 2: assign a weight to each subject i, equal to

Wi =
1

p(Xi |Zi)
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Solution

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 270
0.6 = 450 30

0.6 = 50 120
0.4 = 300 80

0.4 = 200
X = 1 180

0.4 = 450 20
0.4 = 50 60

0.6 = 100 240
0.6 = 400
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Example

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 450 50 300 200
X = 1 450 50 100 400

I Step 3: use p(Y = 1|X = x) in the weighted sample as an
estimate of p(Yx = 1)
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Solution

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 450 50 300 200
X = 1 450 50 100 400

p(Y0 = 1) = p(Y = 1|X = 0) =
50 + 200

450 + 50 + 300 + 200
= 0.25

p(Y1 = 1) = p(Y = 1|X = 1) =
50 + 400

450 + 50 + 100 + 400
= 0.45

p(Y1 = 1)
p(Y0 = 1)

=
0.45
0.25

= 1.8

I Same as with standardization
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Why IPW works

I IPW breaks the association between X and Z

Z
??

�� ��
X // Y

I As a consequence, Z is not a confounder in the weighted
sample
I because a confounder must be associated with the

exposure
I If Z is sufficient for confounding control in the original

sample, then there is no confounding in the weighted
sample

I Thus, in the weighted sample we have exchangeability, so
that p(Y = 1|X = x) = p(Yx = 1)
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Example

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 450 50 300 200
X = 1 450 50 100 400

I Verify that X and Z are independent in the weighted
sample
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Solution

Z = 0 Z = 1
Y = 0 Y = 1 Y = 0 Y = 1

X = 0 450 50 300 200
X = 1 450 50 100 400

p(X = 1|Z = 0) =
450 + 50

450 + 50 + 450 + 50
= 0.5

p(X = 1|Z = 1) =
100 + 400

300 + 200 + 100 + 400
= 0.5

I p(X = 1|Z = 0) = p(X = 1|Z = 1) so X and Z are
independent
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Outline

Estimation without regression models
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Inverse probability weighting
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Outline

Estimation without regression models
Standardization
Inverse probability weighting

Estimation with regression models
Standardization
Inverse probability weighting
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Motivating example

I Suppose we carry out an observational study to estimate
the causal effect of AZT on infection risk for AIDS patients

I 1000 subjects enrolled
I Baseline measures:

I CD4 count (Z ; counts/µl)
I AZT level (X ; ‘0’ for ‘untreated’, ‘1’ for ‘treated’)

I At end of follow up we measure:
I infection status (Y ; ‘1’ for infection, ‘0’ for no infection)
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Data (in R)

> aids <- read.table("aids.txt", header=TRUE)
> aids[1:10, ]

Z X Y
1 405 0 1
2 412 0 0
3 301 1 0
4 253 1 0
5 307 0 1
6 392 0 1
7 361 0 0
8 363 1 0
9 267 1 0
10 355 0 1
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Data (in Stata)
. import delimited "aids.txt", delimiter(space)

case(preserve)
. list in 1/10

+-------------+
| Z X Y |
|-------------|

1. | 405 0 1 |
2. | 412 0 0 |
3. | 301 1 0 |
4. | 253 1 0 |
5. | 307 0 1 |

|-------------|
6. | 392 0 1 |
7. | 361 0 0 |
8. | 363 1 0 |
9. | 267 1 0 |

10. | 355 0 1 |
+-------------+
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Crude association (in R)

> chisq.test(x=aids$X, y=aids$Y)

Pearson’s Chi-squared test with Yates’ continuity correction

data: aids$X and aids$Y
X-squared = 337.47, df = 1, p-value < 2.2e-16

I Interpretation?
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Crude association (in Stata)

. tabulate X Y, chi2

| Y
X | 0 1 | Total

-----------+----------------------+----------
0 | 199 299 | 498
1 | 475 27 | 502

-----------+----------------------+----------
Total | 674 326 | 1,000

Pearson chi2(1) = 339.9550 Pr = 0.000

I Interpretation?
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The role of CD4 count

I Subjects with low CD4 count are more likely to get AZT,
and more likely to get infections

I Arguable, CD4 count is an important confounder that we
need to control for

I But in the data, very few subjects have the same CD4
count
I stratification on CD4 count is not feasible

I Let’s use a regression model
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The logistic regression model

I Since the outcome is binary, it is natural to use the logistic
regression model

logit{p(Y = 1|X ,Z )} = α+ βX + γZ

I What are the interpretations of α, β, and γ in terms of
probabilities?
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Solution

logit{p(Y = 1|X ,Z )} = α+ βX + γZ

α = logit{p(Y = 1|X = 0,Z = 0)}

= log
{

p(Y = 1|X = 0,Z = 0)
p(Y = 0|X = 0,Z = 0)

}

β = logit{p(Y = 1|X = 1,Z )} − logit{p(Y = 1|X = 0,Z )}

= log
{

p(Y = 1|X = 1,Z )

p(Y = 0|X = 1,Z )
/

p(Y = 1|X = 0,Z )

p(Y = 0|X = 0,Z )

}

γ = logit{p(Y = 1|X ,Z + 1)} − logit{p(Y = 1|X ,Z )

= log
{

p(Y = 1|X ,Z + 1)
p(Y = 0|X ,Z + 1)

/
p(Y = 1|X ,Z )

p(Y = 0|X ,Z )

}
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Causal interpretation

logit{p(Y = 1|X ,Z )} = α+ βX + γZ

I If we have conditional exchangeability, given Z , then β is
the conditional effect of X on Y , given Z , as a log odds
ratio:

β = log
{

p(Y1 = 1|Z )

p(Y1 = 0|Z )
/

p(Y0 = 1|Z )

p(Y0 = 0|Z )

}

40 / 77



Underlying assumptions

logit{p(Y = 1|X ,Z )} = α+ βX + γZ

I What assumptions does this model make?
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Solution

logit{p(Y = 1|X ,Z )} = α+ βX + γZ

I No effect modification by (interaction with) Z
I The increase in log odds of being infection free, comparing

AZT with no AZT, at a given CD4 count Z , is assumed to be
constant (= β) across levels of Z

I Linear ‘effect’ of CD4 count
I The increase in log odds for being infection free, comparing

CD4 count Z + 1 with CD4 count Z , at a given AZT level X ,
is assumed to be constant (= γ) across levels Z
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Fundamental limitation of models

I All models are wrong
I but if the model is approximately correct, then our

conclusions are approximately valid
I Assumptions that we make should ideally be justified by

both
I subjects matter knowledge, and
I data (e.g. diagnostic tests)
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Fitting the model (in R)

> fit <- glm(formula=Y~X+Z, family=binomial,
data=aids)

> summary(fit)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.251557 0.707103 3.184 0.00145 **
X -3.513298 0.240476 -14.610 < 2e-16 ***
Z -0.004962 0.001882 -2.637 0.00836 **

I Interpretation?
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Fitting the model (in Stata)

. logistic Y X Z, coef
------------------------------------------------------------------------------

Y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

X | -3.513298 .2404814 -14.61 0.000 -3.984633 -3.041963
Z | -.0049621 .0018817 -2.64 0.008 -.0086502 -.0012739

_cons | 2.251557 .7071069 3.18 0.001 .8656534 3.637461
------------------------------------------------------------------------------

I Interpretation?
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A closer look at the model (in R)

I Adding an interaction term between X and Z gives:

> fit <- glm(formula=Y~X+Z+X*Z, family=binomial,
data=aids)

> summary(fit)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.987432 0.766467 1.288 0.197645
X 3.309358 1.734947 1.907 0.056460 .
Z -0.001564 0.002049 -0.763 0.445355
X:Z -0.021647 0.005667 -3.820 0.000133 ***

I Interpretation? Is the treatment beneficial or harmful?
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A closer look at the model (in Stata)

I Adding an interaction term between X and Z gives:

. logistic Y X Z c.X#c.Z, coef
------------------------------------------------------------------------------

Y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

X | 3.309358 1.734994 1.91 0.056 -.0911686 6.709884
Z | -.0015638 .0020491 -0.76 0.445 -.0055799 .0024523
|

c.X#c.Z | -.0216467 .005667 -3.82 0.000 -.0327538 -.0105396
|

_cons | .9874315 .766467 1.29 0.198 -.5148162 2.489679
------------------------------------------------------------------------------

I Interpretation? Is the treatment beneficial or harmful?
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What to report? (in R)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.987432 0.766467 1.288 0.197645
X 3.309358 1.734947 1.907 0.056460 .
Z -0.001564 0.002049 -0.763 0.445355
X:Z -0.021647 0.005667 -3.820 0.000133 ***

I The conditional effect of X on Y , given Z , depends on Z
I Should we report the main effect together with the

interaction term?
I unintuitive for non-statisticians
I cumbersome if many covariates and interaction terms

I Or perhaps report the effect at the mean/median of Z?
I not very informative, unless most subjects are close to the

mean/median
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What to report? (in Stata)
------------------------------------------------------------------------------

Y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

X | 3.309358 1.734994 1.91 0.056 -.0911686 6.709884
Z | -.0015638 .0020491 -0.76 0.445 -.0055799 .0024523
|

c.X#c.Z | -.0216467 .005667 -3.82 0.000 -.0327538 -.0105396
|

_cons | .9874315 .766467 1.29 0.198 -.5148162 2.489679
------------------------------------------------------------------------------

I The conditional effect of X on Y , given Z , depends on Z
I Should we report the main effect together with the

interaction term?
I unintuitive for non-statisticians
I cumbersome if many covariates and interaction terms

I Or perhaps report the effect at the mean/median of Z?
I not very informative, unless most subjects are close to the

mean/median
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The marginal effect

p(Y0 = 1) vs p(Y1 = 1)

I Arguably more intuitive than main effect + interaction term
I Can always be presented as one single number (e.g. one

log odds ratio) regardless of the number of interactions
I More informative than the effect at the mean/median Z ,

since it applies to the whole population
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The standardization formula

I If we have conditional exchangeability, given Z , then
p(Yx = 1) can be computed with the standardization
formula

p(Yx = 1) =
∑

Z

p(Y = 1|X = x ,Z )p(Z )

I If both X and Z are binary, then we can estimate
p(Y = 1|X ,Z ) and p(Z ) without modeling assumptions
I non-parametric standardization

I If X and/or Z is continuous (or categorical with many
levels), non-parametric standardization is not feasible

I But we can use a regression model to estimate p(Yx = 1)

51 / 77

Four steps for regression standardization

I Step 1: fit a regression model for the outcome
I Step 2: replace the factual exposure level with x , for each

individual
I Step 3: estimate p(Y = 1|X = x ,Z ) for each individual

(i.e. for each observed value of Z )
I Step 4: average these estimates over all individuals to

obtain an estimate of p(Yx = 1)
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Code for standardization (in R)

> #step 1
> fit <- glm(formula=Y~X+Z+X*Z, family=binomial,

data=aids)
> #step 2 for x=0
> aids0 <- aids
> aids0$X <- 0
> #step 3 for x=0
> pred0 <- predict(object=fit, newdata=aids0,

type="respons")
> #step 4 for x=0
> p0 <- mean(pred0)
> p0
[1] 0.6083575
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Code for standardization, cont’d (in R)

> #step 1
> fit <- glm(formula=Y~X+Z+X*Z, family=binomial,

data=aids)
> #step 2 for x=1
> aids1 <- aids
> aids1$X <- 1
> #step 3 for x=1
> pred1 <- predict(object=fit, newdata=aids1,

type="respons")
> #step 4 for x=1
> p1 <- mean(pred1)
> p1
[1] 0.03748992
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Code for standardization (in Stata)

. *step 1

. logistic Y X Z c.X#c.Z

. *step 2 for x=0

. replace X = 0

. *step 3 for x=0

. predict pred0

. *step 2 for x=1

. replace X = 1

. *step 3 for x=1

. predict pred1

. *step 4

. mean pred0 pred1
--------------------------------------------------------------

| Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------

pred0 | .6083575 .0005884 .6072027 .6095122
pred1 | .0374899 .0014004 .0347419 .0402379

--------------------------------------------------------------
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The marginal causal log odds ratio

p̂(Y0 = 1) = 0.6083575 p̂(Y1 = 1) = 0.03748992

I We can use the estimates of p(Y0 = 1) and p(Y1 = 1) to
construct an estimate of the marginal causal log odds ratio

log
{

p̂(Y1 = 1)
1− p̂(Y1 = 1)

/
p̂(Y0 = 1)

1− p̂(Y0 = 1)

}
= −3.68

I Interpretation?
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Standard errors

I Standard errors can be obtained with some additional
programming
I sandwich formula
I bootstrap

I Bootstrap:
s.e = 0.23

I 95% CI:

estimate± 1.96× s.e. = −3.68± 1.96× 0.23 = (−3.23,−4.13)

57 / 77

Other measures of marginal effects

logit{p(Y = 1|X ,Z )} = α+ βX + γZ + ψXZ

p̂(Y0 = 1) = 0.6083575 p̂(Y1 = 1) = 0.03748992

I Once we have estimated p(Y1 = 1) and p(Y0 = 1)
separately, we can estimate any measure of effect, e.g.

causal risk difference = p̂(Y1 = 1)− p̂(Y0 = 1) = −0.57

causal risk ratio = p̂(Y1 = 1)/p̂(Y0 = 1) = 0.06

even though the estimates were derived from a logistic
regression model
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The package stdReg (in R)

> library(stdReg)
> fit <- glm(formula=Y~X+Z+X*Z, family=binomial,

data=aids)
> std.fit <- stdGlm(fit=fit, data=aids, X="X")
> summary(std.fit)

Formula: Y ~ X + Z + X * Z
Family: binomial
Link function: logit
Exposure: X

Estimate Std. Error lower 0.95 upper 0.95
0 0.6084 0.02410 0.5611 0.6556
1 0.0375 0.00729 0.0232 0.0518
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The package stdReg, cont’d (in R)

> summary(object=std.fit, transform="logit",
contrast="difference", reference=0)

Formula: Y ~ X + Z + X * Z
Family: binomial
Link function: logit
Exposure: X
Transform: logit
Reference level: X = 0
Contrast: difference

Estimate Std. Error lower 0.95 upper 0.95
0 0.00 0.000 0.00 0.00
1 -3.69 0.226 -4.13 -3.24
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References for stdReg

Sjölander A. (2016). Regression standardization with the R
package stdReg. European Journal of Epidemiology 31(6),
563-574.
Sjölander, A. (2018). Estimation of causal effect measures with
the R-package stdReg. European Journal of Epidemiology
33(9), 847-858.
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The margins command (in Stata)

. margins, at(X=0 X=1)
------------------------------------------------------------------------------

| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_at |
1 | .6083575 .0240991 25.24 0.000 .561124 .6555909
2 | .0374899 .0072697 5.16 0.000 .0232416 .0517383

------------------------------------------------------------------------------
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The margins command, cont’d (in Stata)

. margins, at(X=(0 1)) post

. nlcom (log_odds_diff:
log((_b[2._at]/(1-_b[2._at])))-
log((_b[1._at]/(1-_b[1._at]))))

-------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------------+----------------------------------------------------------------
log_odds_diff | -3.685885 .2254293 -16.35 0.000 -4.127719 -3.244052
-------------------------------------------------------------------------------
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Outline

Estimation without regression models
Standardization
Inverse probability weighting

Estimation with regression models
Standardization
Inverse probability weighting
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Marginal effect through exposure model: IPW

I We have seen that marginal causal effect can be estimated
with IPW

I Like standardization, IPW requires modeling assumption
when X and/or Z is continuous (or categorical with many
levels)

I However, whereas standardization requires a model for the
outcome, IPW requires a model for the exposure
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Three steps for IPW

I Step 1: fit a regression model for the exposure
I Step 2: use the fitted exposure model to estimate the

subject-specific weight

Wi =
1

p(Xi |Zi)

I Step 3: Use p(Y = 1|X = x) in the weighted sample as an
estimate of p(Yx = 1)
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Code for IPW (in R)

> #step 1
> fit <- glm(formula=X~Z, family=binomial,

data=aids)
> #step 2
> pred <- predict(object=fit, type="respons")
> w <- 1/(aids$X*pred+(1-aids$X)*(1-pred))
> #step 3 for x=0
> p0 <- weighted.mean(aids$Y[aids$X==0], w[aids$X==0])
> p0
[1] 0.6079702
> #step 3 for x=1
> p1 <- weighted.mean(aids$Y[aids$X==1], w[aids$X==1])
> p1
[1] 0.03633255
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Code for IPW (in Stata)

. *step 1

. logistic X Z

. *step 2

. predict pred

. gen w = 1/(X*pred+(1-X)*(1-pred))

. *step 3

. mean Y [pweight = w], over(X)
--------------------------------------------------------------

Over | Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------
Y |

0 | .6079702 .0243257 .5602348 .6557056
1 | .0363326 .0071898 .0222237 .0504414

--------------------------------------------------------------
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The marginal causal log odds ratio

p̂(Y0 = 1) = 0.6079702 p̂(Y1 = 1) = 0.03633255

I We can use the estimates of p(Y0 = 1) and p(Y1 = 1) to
construct an estimate of the marginal causal log odds ratio

log
{

p̂(Y1 = 1)
1− p̂(Y1 = 1)

/
p̂(Y0 = 1)

1− p̂(Y0 = 1)

}
= −3.72

I Interpretation?
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Standard errors

I Standard errors can be obtained with some additional
programming
I sandwich formula
I bootstrap

I Bootstrap:
s.e = 0.23

I 95% CI:

estimate± 1.96× s.e. = −3.72± 1.96× 0.23 = (−3.27,−4.17)
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The teffects command (in Stata)

. teffects ipw (Y) (X Z), pomeans
------------------------------------------------------------------------------

| Robust
Y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
POmeans |

X |
0 | .6079702 .024303 25.02 0.000 .5603372 .6556033
1 | .0363326 .0070397 5.16 0.000 .022535 .0501301

------------------------------------------------------------------------------
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Standardization vs. IPW

I Without modeling assumptions, standardization and IPW
give the same results

I When using models, standardization and IPW may give
different results

I What method is best?
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Choice of modeling assumptions

Z
IPW

��

standardization

��
X

standardization
// Y

I Standardization and IPW models different parts of the DAG

I Standardization models how the outcome depends on the
exposure and confounders

I IPW models how the exposure depends on the confounders
I In some scenarios we may know more about one

mechanism than the other, so that one model is easier to
well specify
I e.g. we may know more about the guidelines for AZT

administration than we know about the biological
mechanisms underlying infection

73 / 77

Statistical precision

I Standardization always gives more precise estimates than
IPW
I e.g. smaller standard errors and narrower confidence

intervals
I The difference may be large, in particular when the

exposure is continuous
I in which case IPW requires inverse weighting with a

probability density, which may give very unstable estimates
I This is an important advantage of standardization
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Marginal structural models

I Both standardization and IPW can be generalized for
longitudinal studies with time-varying exposures

I However, IPW is easier to use than standardization when
the exposure is time-varying
I indeed, time varying exposures was the original motivation

for IPW
I When the exposure is time-varying, IPW is used to

estimate causal parameters in marginal structural
models
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Doubly robust estimation

I Standardization gives an unbiased estimate if the outcome
model is correct

I IPW gives an unbiased estimate if the exposure model is
correct

I But if either model is incorrect, then the obtained estimate
is generally biased

I It is possible to combine both models into a doubly robust
estimator
I unbiased if either model is correct, not necessarily both
I two chances of valid inference instead of only one
I beyond the scope of this course
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Summary

I Standard methods for confounding control (e.g.
stratification and outcome regression models) give
conditional (subpopulation) causal effects
I provided that we have conditional exchangeability, given the

measured confounders
I Often, marginal (population) causal effect may be more

relevant target parameters
I Marginal causal effects can be estimated with

standardization and IPW
I either non-parametrically, or with regression models
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