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Today’s programme

8:30 -9:00
9:00-9:10

9:10-9:45

9:45 -10:20

Break
(30 minutes)

10:50-12:20

Lunch
12:20-13:30

Randi (DSBS)
Jonathan (FMS)

Corine Baayen (Ferring)

Henrik Thomsen (Novo)

Anna Berglind (Novo)
Jonas Haggstrom (Cytel)
Niklas Berglind (AstraZeneca)

Breakfast and arrival

Welcome

Topics in group sequential designs

Design and analysis of group sequential trials for
repeated measurements when pipeline data

occurs: a comparison of methods

Family-wise error for multiple time-to-event
endpoints in a group sequential design

Working as a pharmaceutical statistician

Medical statistics in practice — different ways of
making a difference

13:30 - 14:05

14:05-14:40

Break
(20 minutes)

15:00-15:35
On Teams

15:35-16:00

Martin Bgg (Novo)

Daniel Jonker (Ferring)

Emilie Hgjbjerre-Frandsen
(Novo & AAU, Ph.d.
Berkeley US)

Wrap up

Utilization of historical data

Historical Borrowing

Advancing Precision Medicine with Innovative
In Silico Approaches in Reproductive Medicine

Next Generation of young statisticians

Prognostic Score Adjustment

End of the day



Session 1: Topics Iin group
sequential designs

Session lead: Carl-Fredrik



Talk based on the (submitted) tutorial paper:

Design and analysis of group sequential trials for repeated
measurements when pipeline data occurs: a tutorial

Design and analysis of group

sequential trials for repeated Corine Baayent+4, Paul Blanche, Christopher Jennison®,
measurements when pipeline Brice Ozenne®*

data occurs: a comparison of

methods

Corine Baayen R-code available on Github: DelayedGSD package.

1Biometric Division, H. Lundbeck A/S, Valby, Denmark

2Department of Public Health, Section of Biostatistics, University of Copenhagen,
Copenhagen, Denmark

SNeurobiology Research Unit and BrainDrugs, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark

4Global Biometrics, Ferring Pharmaceuticals, Copenhagen, Denmark
SDepartment of Mathematical Sciences, University

of Bath, Bath, United Kingdom FERRING
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Motivating example: a phase 3 trial

Population: patients with a certain neurodegenerative disease
Primary endpoint: change from baseline to Week 12 on a continuous score
Sample size assumptions: power of 90%, one-sided significance level 2.5%, effect 1, sd 2.5, dropout 10%

Analysis: MMRM
Placebo (n=132)

Effect of interest @:

L) LI LI

Active (n=132) baseline to Week 12
between the placebo and
active arm

Day 0 Week 6 Week 12
Randomization Repeated Repeated
Baseline measurement 1 measurement 2

FERRING

MMRM = Mixed model for repeated measurements PHARMACEUTICALS




An interim analysis Is included

Purpose:
- Stop early for efficacy
- Stop early for futility

Motivation
- Plan for a conservative effect size, but stop early in case effect is larger
* Quicker decision-making and lower average sample size

Timing:
When half (132) of the patients has either completed the 12 week treatment period or dropped out.

FERRING

PHARMACEUTICALS
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Stopping boundaries for a standard GSD (3 stage example)

Choose boundaries that control type | error level at « and type Il error level at

— P[leu1|0=0]=a1

-~

b uq P[l1<Z1<u1,ZZZu2|9=O]=a2
D

Il

& . Plliz <Z12 <uypZz3Zwsl0 =0l=a—-a, — o
- Continue us) (= 1s)

o

= Pllyz <Zyp <uyp,Z32uz|l0 =68]=F—F,— b1
IS L

=

S Plly <Zi <uy,Z; < L]0 =6]=p,

o ll

o

? P[Zy <1410 = 8] = By

Stage k=1 k=2 k=3

FERRING
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GSD = Group Sequential Design, I, = 1/var(f},) is the observed information at stage k

8



The joint distribution of the test statistics

The cannonical distribution

To calculate the probability of a type | and type Il error at each stage, e.qg.

P[ll <Z1 < ul,Zz = u2|8 = O]

we need to understand the joint distribution of the test statistics Z,,

The observed information for 8 at stage k equals I;, = 1/var(ék)

For most common test statistics, the joint distribution is known and is called the cannonical joint

distribution:

Z,~N(8,\/I})
COU(ZI,ZU) = W/Il/ll'

FERRING

PHARMACEUTICALS
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Deciding on error levels spent at each stage

Error spending functions

We need to pre-define the type | and Il error levels (a;, and S;) that we wish to spend at each stage

A flexible approach to doing so is by using error spending functions

Error spending functions map the observed information at a stage to a cummulative error level to be
spent by that stage. For example Kim and DeMets proposed:

P
For the type l error: f(I) = «a min(l,{ ! } )

Imax

p
For the type Il error: g(1) = ,Bmin(l,{ I } )

Imax

FERRING

Kim K, DeMets DL. Design and analysis of group sequential tests based on the type | error spending rate function. Biometrika. 1987;74(1):149-154. oS
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Pipeline data (recruitment rate 2.5 patients/week)

At the time of the interim analysis, not all randomized patients will have completed the study

132 patients
completed or
dropped out

132 patients

randomized

12 weeks

Last pipeline
patient
completed

Interim
analysis

<12 weeks

132 completed patients

30 patients randomized while Patient 132 ongoing
(~ 15 contribute with week 6 data at data cut)

7 patients randomized after patient 132 completed treatment

Data cut for interim
analysis

37

pipeline
patients

Final analysis,
including 169
randomized patients

* Include the data from pipeline patients in the final analysis to achieve maximal precision.

FERRING

PHARMACEUTICALS
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GSD with pipeline data (3 stage example)
Hampson & Jennison, JRSS-B 75(1):3-54, 2013

At interim: decide whether to stop recruitment based on all available data
At decision: after following up on all patients, final decision on whether to reject the null hypothesis

Ore/Iie)
kS
t Hy

| |
l I
I |
ol | |
| |
| |
i |

L5
I Tl U
~ 1
N . ,
. 1
> Continue : c, uz (=13 =¢3)
I recruitment ==’ | |
c =1 ! |
Q) I I
®)
a §I L |
e <! ' '
'S i | |
o ll l ! !
S ! | !
)
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Decision boundaries — Method 1

Interim stopping boundaries (W and 'k derived as for standard GSD (‘type | and Il error” controlled at
Interim)

Calculate ( ¢ by solving:
a,
~ » P|Z1.(k-1) € Cr.tk-1), Zie = g, Zy < |6 = 0]
=y ! 2 _ )
Il Uy P[Z1:(k_1) € Cl:(k—l)ka < lk:Zk = Ckle = 0],
& a—a, —a;
:; “ C2 uz (= I3) with
@ Cr = (L, ug)
e K Kk Uk
S B—PB2— b1 and
3 L _ [
g , Zy = O, | Ik
& L i . - |
% the Z-statistic at the decision analysis.
B1
Stage: k=1 k=2 k=3

FERRING

Note that the type Il error spent at decision analysis k is < B, leading to an increase in power, as there is more data than at the interim analysis. | FuarmaceuTICALS
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Decision boundaries — Method 2

Same principle, but aims to achieve planned power exactly

At interim analys k:

1. Calculate ¥k as usual
2. Predict the information at the
decision analysis: I,
3. Simultaneously search for
I, and (¢, such that the
type Il error spent at decision
equals By ((cx defined as before)

a,

=

g U ar
S

| Us

~ ax—0a; —
) ¢ B
> Co Us (_ l3)
3

S B—P2— b1
o

a I

o)

E ..... > :8

o 2

o ll

e

w! » ﬁl

Stage k=1 k=2 k=3

At decision analys k: recalculate | ¢k

Power likely closer to planned, but
may not match exactly if I, was not
correctly predicted.

FERRING
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A proposal for a non-binding futility rule for Methods 1 and 2

Boundaries should maintain type | error control even if the futility rule is ignored

Boundaries at the interim analyses similar as for a standard GSD with non-binding futility boundaries

Calculate { ¢, by solving:

U1:(k-1)

U1:(k-1)

Zk = uk,Zk < Ckle = 0]

Zk < lkJZk = Cklg = 0],

Proof provided in Baayen et al. (submitted)

— P[212u1|9=0]=0(1

=

~

5 ul P[‘l-_}—ézl < ul,Zz = u2|9 = O] =y
{wa)

I U, Pllyz<Z1 < Uq2,Z3 = uz|0 = 0]

S =a— AT

~ c

- . C2 uz (= 13)

]

g

5

8 L PlZ1. k1) <
o :

a

o) Ly P|Zyk-1) <
)

Stage: k=1 k=2 k=3

FERRING

PHARMACEUTICALS

15




Choice of critical value at the decision analysis

¢, can be substantially lower than the critical value for a fixed design ®(1 — a)

For reasons of credibility we might —
suggest ¢’y = max(c, (1 — a)) ~
“f 2.42
This ensures that concluding efficacy S & (1 —a) =1.96
will never be easier than if we had - 1.61
obtained the same data without an 2
interim analysis (fixed trial) g
g) 0.63
2
Conservative type | error control 2
Stage: k=1 k=2

May reduce power
Planned boundaries for the case study

FERRING

PHARMACEUTICALS
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Method 3 (Jennison 2022, course slides)

Avoiding reversals from futility to efficacy and anticipating ¢;, = ®(1 — a)

If at interim recruitment is stopped due to negative results (Z, < l;):
« One may wish to stop following/treating patients for ethical and practical reasons

- Reversals to a positive result at decision (Z, = ¢, ) may not be considered credible

PlZyz2w,Z1 = ¢1|0 = 0] = 4

251 P[11<Zl<ul,222u2,722C2|9:O]:a2
( =
»f 2 Lo Pllyz <Zyz2 <uyp,Z3Z2uzl0 =0]l=a—a; —
\T/
1.96 us (=1
F Y 3 (=13)

£ :

] P[ll < Zl < u1,22 < l2|9 = 6] +P[ll < Zl < ul,Zz > uz,ZZ < C2|0 = 6] = ,82
1

Stopping boundary (Z; = 6+/1Ix)

— ~
P[Z; < L|0 =81+ P|Zy > uy,Z, < ;|0 =6] =5 FERRING

PHARMACEUTICALS

Stage: k=1 k=2 k=3 -




Boundaries for the case study according to all methods

Similar boundaries at planning stage, results may differ (somewhat) when executing

Method 1
>
S 2.36 2.37 234
. o 2.03 2.03
Information % 1.96 1.96 1.98 2
correctly 8
predicted 2
(I1/I;max = 0.68) § 0.80 0.77 0.77
N
I”‘ . 0.60 0.68 1 ,Ik . 0.60 0.68 1 I”‘ . 0.60 0.68 1
> max max max
3 2.29
_ 2.36 2.37
Information || 212
- 2.03 2.03 2.02
wrongly 9 1.96 1.96
predicted =
(I1/Lnax = 0.90) g
% 0.80 0.85 0.67

Same, no dependence on future info  With 1 interim, only futility bnd differ All boundaries depend on future info



Comparison of methods (simulations show only minor differences)

Type | error
Power

Information
extrapolation
Non-binding

futility rule

Reversal fut
to eff

Correct
inference

No constraint

Can be higher
(~0.3% point)

No

Yes
(0.05-0.5%)

= P(1 —a)

Can be lower
(~0.5% point)

No

Yes
(0-0.25%)

No constraint

Controlled

Yes (if correct
I,, prediction)

Yes

Optional

Yes
(0.05-0.5%)

= P(1 —a)

Can be lower
(~0.5% point)

Yes

Yes
(0-0.25%)

Yes (Median Unbiased
but see presentation at DSTS

-day meeting and paper Baayen et

= P(1 —a)
Yes (if correct
I, prediction)

Yes

No

p-value),
al. for details

E{timate, confidence interval and

Interesting approach when information at
decision difficult to predict (e.g. delayed
endpoints without short term measurements)?

Preferred choice for case study.
Generally preferrable if information can
be predicted with reasonable accuracy?



Different approaches to handling pipeline data

Inclusion of pipeline data

Incorporate in hypothesis
test (primary analysis upon
observing all pipeline data)

Do not incorporate in
hypothesis test (primary
analysis at interim, ignoring
pipeline data)

Asikanius, E., et al., 2024. Considerations for the planning , conduct and reporting of clinical trials with interim analyses. ArXiv: [2410.01478v1] Considerations for the planning, conduct and reporting of
clinical trials with interim analyses

Schidrhuis, S., et al., 2024. A two-stage group-sequential design for delayed treatment responses with the possibility of trial restart. Statistics in Medicine, June 2023, 1-21. https://doi.org/10.1002/sim.10061

FERRING

PHARMACEUTICALS
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https://arxiv.org/abs/2410.01478v1
https://arxiv.org/abs/2410.01478v1
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Views and opinions

expressed are those of
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RESEARCH ARTICLE Statistics WILEY

Familywise error for multiple time-to-event endpoints in a
group sequential design

Henrik F. Thomsen'® | Nanna L. Lausvig® | Christian B. Pipper?® |
Seren Andersen?® | Lars H. Damgaard? | Scott S. Emerson* | Henrik Ravn?

' Department of Biostatistics, Novo
Nordisk A/S, Aalborg, Denmark
ZDepartment of Biostatistics, Novo
Nordisk A/S, Seborg, Denmark

We investigate the familywise error rate (FWER) for time-to-event endpoints
evaluated using a group sequential design with a hierarchical testing procedure
for secondary endpoints. We show that, in this setup, the correlation between
*Department of Public Health, University the log-rank test statistics at interim and at end of study is not congruent
of Southern Denmark, Odense, Denmark

with the canonical correlation derived for normal-distributed endpoints. We
*Department of Biostatistics, University of

Washington, Seattle, Washington, show, both theoretically and by simulation, that the correlation also depends

on the level of censoring, the hazard rates of the endpoints, and the hazard
Henrik F. Thomsen, Novo Nordisk A/S, ratio. To optimize operating characteristics in this complex scenario, we pro-
Alfred Nobels Vej 27, DK-9220 Aalborg pose a simulation-based method to assess the FWER which, better than the

Ost, Denmark. alpha-spending approach, can inform the choice of critical values for testing
Email: hfth@novonordisk.com

Correspondence

secondary endpoints.

KEYWORDS

familywise error rate, group sequential design, secondary endpoints, time to event endpoints

1 | INTRODUCTION

Large event-driven clinical trials often employ a group sequential design (GSD) with a single planned interim analysis
of a primary time-to-event (TTE) endpoint to allow for early stopping for efficacy or futility. Typically, such trials are
designed using a parallel-group 1:1 randomization to active treatment and comparator treatment and encompass a pri-
mary and at least one confirmatory secondary endpoint, which are tested using a stage-wise hierarchical strategy. That is,
the secondary endpoint(s) are tested only if the primary and preceding secondary endpoints are statistically significant.
In this setup, the secondary endpoints are tested at most once; either at the interim analysis, the final analysis or not at
all. Examples of the use of this hierarchical test strategy are abundant.’

The method evaluated in the present study is inspired by the motivating example provided later in this article
(Section 4). In summary, we construct a plausible scenario for a trial with a primary composite TTE endpoint compris-
ing the cardiovascular event types non-fatal myocardial infarction (MI), non-fatal stroke, and cardiovascular death. In
addition, the scenario trial includes a single-component secondary endpoint consisting of cardiovascular death. Of note,
the primary endpoint includes the secondary endpoint plus a second component of non-fatal MI or non-fatal stroke.
Accordingly, concordance exists between the primary and secondary endpoints, which contributes to their correlation.
Additional correlation originates from the inherent correlation between the endpoint components. These two sources of
correlation of the endpoints are investigated individually and in conjunction to assess how they influence the correlation
of the test statistics and the familywise error rate (FWER).

Controlling the overall FWER is crucial, not least in the design of trials supporting regulatory decision making. Thus,
ways to optimize the statistical power while controlling the FWER are critically needed and even minor enhancements of

Statistics in Medicine. 2024;1-15. wileyonlinelibrary.com/journal/sim & 2024 John Wiley & Sons Ltd. | 1

Q

novo nordisk”

Familywise error for
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endpoints in a
group sequential desi

Henrik F. Thomsen
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Intro
‘Ordinary’ correlation
Concordance

Combined
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Examples of endpoints in outcome trials

Primary endpoint Primary endpoint Primary endpoint
MACE * Composite CKD * MACE
Confirmatory secondary Confirmatory secondary Confirmatory secondary
CV-death * eGFRslope * Composite CKD
 Composite heart failure * MACE * CV-death
All-cause death * All-cause death *  MALE (major adverse limb events)

o 40,
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Setting the stage

e Group sequential design (GSD): A design where a hypothesis is tested multiple times based on an
increasing amount of data.

* Alpha-spending: Method for handling the multiplicity-issues of testing the same hypothesis multiple
times — utilizes the fact that the hypotheses are strongly correlated.

* Hierachical testing: Method for handling multiplicity-issues when testing more than one hypothesis.

( Zp.i ‘1 ( \/Eép ‘1 1 pE \/E PE \/;_%1
Lsj ~ N \/E"Ss -1 PE\/} \/E
Zpf Op C 1 PE

uZS'f) \\ 35)_' ' ' 1 )

, (D)

P[Zp*f > Cp.fa Zsi > Csy) + P(ZPJ' < Cp.ia Zp.f 2> Cp*f:- Zsf > Cs*f)a (2) q@j

Novo Nordisk®
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FWER

0.08

0.08

0.07

0.02

0.01

Testing a Primary and a Secondary Endpoint
in a Group Sequential Design

Ajit C. Tamhane,* Cyrus R. Mehta?** and Lingyun Lin®***

Novo Nordisk”
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Added complications

Primary endpoint is MACE: time to first of non-fatal Ml/stroke and CV-death
Secondary endpoint: time to CV-death
* 2 types of correlation.

* ‘ordinary’ correlation of components

* Concordance

* There is (substantial) censoring of the endpoints.

Novo Nordisk®
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Simulation setup (base case)

* 1:1 randomization ratio.

* Comparator hazard rate for primary endpoint 0.0425.

* Hazard ratio for primary endpoint 0.85.

* One-sided significance level of 2.5%.

* Power for the primary endpoint of 90%.

* Oneinterim analysis at 2/3 of the planned information.

* Resulting in the need to accrue 1610 events at final analysis, and 1074 events at interim analysis (O’Brien-Fleming alpha-
spending for primary).

e An accrual time of 0.5 years, and a total duration of 5 years.

* Assume the event-times are following an exponential distribution.
* Only administrative censoring.

* Calculate the 4 Z-stats for each sim.

* Based on these calculate the var matrix of (1) and then use (2) to calculate the FWER. qj

o 40,
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‘Ordinary’ correlation — no concordance

* Simulate the time-to-events by means of a normal copula: N -> uniform -> exponential dist.
 How do the endpoint correlation translate over into the Z-stats correlation.

* For simplicity, we present only the observed correlation of the Z-statistics for the test of the
primary endpoint and secondary endpoint at the final analysis.

* The rates are given as 4, and A, for the comparator arm, and HR,4,, and HRgAg = A5 as HR¢= 1.

o 40,
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Conclusions

Higher censoring leads to lower Z-
stat correlation (attenuation)

Higher endpoint correlation leads
to higher Z-stat correlation

The distribution between primary
and secondary rates plays a role

No clear effect for different effect-
sizes of the primary endpoint

Novo Nordisk”
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ConCIUSionS Censoring 0% ---- 10% --- 80% - - 95%
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Concordance

e Simulate two independent components from an exponential distribution
1. Non-fatal MI/Stroke
2. CV-death

* Primary endpoint is the minimum of the time-to-event for the two components
 Due to the independence, this endpoint is also exponentially distributed

* The secondary endpoint is component 2 (CV-death)

Novo Nordisk®
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Conclusions

* A higher degree of censoring leads to a
higher correlation between the Z-
statistics.

* When the endpoint correlation
increases, the correlation of the Z-
statistics increases.

* The correlation of the Z-statistics is in
general higher than the endpoint
correlation.

* Finally, we show that marked inflation
of the FWER occurs only when the
effect size for the primary endpoint is
small and the correlation
(concordance) between endpoints
pronounced.

Novo Nordisk”
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Combined

 The primary endpoint encompasses non-fatal myocardial infarction (Ml), non-fatal stroke, and
cardiovascular death, while the secondary endpoint solely consists of cardiovascular death. The two
components—non-fatal Ml/stroke and cardiovascular death—will be correlated

* Interim and final analyses are conducted after accruing 1074 and 1610 events, respectively, and the
trial enroll 4729 subjects in each treatment arm

* For the analysis of the primary endpoint, we use O’Brien-Fleming alpha-spending critical values of
2.51 and 1.99 for interim the and final analysis, respectively

* Things get a little more complicated with correlated components (eg the primary endpoint is no
longer exponentially distributed due to the components being correlated)

* We use NN data to get relevant estimates rates and correlations

O

o 40,
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Estimates from historic data

Placebo hazard rates for cardiovascular death are
set to 0.014 and confined to the interval [0.005;
0.02]

Placebo hazard rates for non-fatal myocardial

infarction/non-fatal stroke are set to be 0.03 and
confined to [0.02; 0.04].

The Spearman correlation is set to 0.4 confined to
the interval [0; 0.7]
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Worst case scenario

HR;=0.9, HRs="1

by = 0.02
3.0% -
—
o
& 2.5% e I
"""" o
z S
200%™ - - .
00 02 04 06
P

Critical values
= Nominal
===+ Optimized

~ =+ Pocock

Novo Nordisk”

FIGURE 4 FWER as a function of py, using nominal (1.96), Pocock (2.07, 2.25), and optimized (2.015) critical values for the secondary

endpoint, for the worst case combination of 4, 4; and HR,,.
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Power gain

Using the optimized critical values, instead of the alpha-spending Pocock approach in the “base case”
(HR, = 0.85, HR; = 0.85, placebo hazard rate for the primary endpoint of 0.0425, placebo hazard rate for
the secondary endpoint of 0.0125, and a correlation between components of 0.4), we show an increase
in the power of the secondary endpoint (from 29.4% to 33.5%).
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Conclusions

The correlation between the Z-
statistics is attenuated by censoring of
In general, we observe that a high the endpoints when the endpoints
between Z-statistics correlation is are correlated without sharing a
associated with a high FWER. component, and conversely when the
correlation between the endpoints is
solely from concordance.

The correlation of the Z-statistics
further depends both on the hazard
rates of the endpoints and the hazard
ratios.

We have given tools to evaluate the
FWER by means of simulations and The proposed use of critical values
suggestions on how to optimize from alpha-spending GSD will in some
critical values under FWER control in a real world scenarios be unnecessarily
GSD utilizing a hierarchical testing restrictive.
strategy.
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Limitations

 Both the primary and secondary endpoint are TTE endpoints, but the methods are straightforward to
apply with endpoints with other distributions.

* Only one secondary endpoint.

* The primary endpoint consists of 2 components, and the secondary consists of one of those
components.

A normal copula is used when generating correlated exponential distributed data.
 We are only looking at differing levels of administrative censoring.

 We are using an exponential distribution for the TTE endpoints.
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Medical statistics in practice
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Making a difference

How can statisticians make a real difference in medicine
and impact patients and their families?
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Pride in what we do

Examples of when you and/or your stats colleagues did
something that really made a difference
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Outside perspective

What are areas where statisticians are uniquely equipped
to make a difference?
What to do and what not to do?
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Statisticians’ role in data science

Exciting times for broader data science area
Nobel prizes and enormous focus on Al
Risk or opportunity for statisticians?

Any advice for us as a skill?
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Dynamic Borrowing
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* Introduction and rationale for borrowing
e Bayesian Dynamic Borrowing in a nutshell
* Elements of a BDB design

e A case example from Novo Nordisk

* Regulatory Outlook

* Summary
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Why borrow?

Conclusion

All the forces in the world are not so powerful as an 1dea whose
time has come.
—Vietor Hugo™

There continues to be a sense of urgency in developing
medicines for patients in need. Patients, academics, drug devel-
opment companies, and regulators are all incentivized to accel-
erate our ability to test new interventions for efficacy and safety
while minimizing subject exposure. Regulators have a record
of accepting historical control data for interventions for med-
ical devices and/or indications with small populations.

The methods covered in this paper give us the tools to use
fewer subjects in late-phase confirmatory clinical tnals. It is
our opinion that this is an idea whose time has come. The
industry and regulatory science has matured to the point
where high-quality data exists to support these approaches;
the statistical methods have evolved to provide a robust
understanding of risk; and our evolution to a patient-centric
model demands that we leverage these methods more broadly.

Lim et al. (2018)

Novo Nordisk”

It may be unethical to adminster placebo or we want to
minimise exposure to placebo, especially in lifethreatening
disease areas

Hard to recruit diseases (such as rare disease) or sub-groups
(for example pediatrics)

For bridging/extrapolating/partially extrapolating where high
quality data exists, and there is a good scientific understanding
of the biology

Even in larger disease areas where natural disease progression
is well understood, we could potentially get better treatments
faster to patients

Regulators are open to exploring alternative study designs

Complex Innovative Trial Design Meeting
Program

On this page

Minimizing Patient Burden Through the Use of Historical Subject-Level Data in Innovative Confirmatory Clinical Trials: Review of Methods and Opportunities | Therapeutic Innovation & Requlatory Science % O

(springer.com); Complex Innovative Trial Design Meeting Program | FDA



https://link.springer.com/article/10.1177/2168479018778282
https://link.springer.com/article/10.1177/2168479018778282
https://www.fda.gov/drugs/development-resources/complex-innovative-trial-design-meeting-program
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What’s not to like?

* Augmenting a RCT with historical data risks
inflating the type | error in case of data
conflict/drift/incongrunence between the
concurrent control and the historical control

* This has to be weighed against the gain in
power/precision
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What to borrow?

* In-house trial data (RCT, NIS)
* Systematic Literature Reviews

* Data-sharing initiatives (TransCelerate,
Project Datasphere, Vivli, ...)

e Several cross-industry working
groups/consortia

*  Ex. European EFSPI/PSI Historical Data Special Interest Group,
DIA Bayesian Working Group, Medical Device Innovation
Consortium External Evidence Methods,...

Completed
clinical studies

Medical

chart

Historical data

Real World
Data (AEMR,
CPRD,..)

Patient
registry

Observational
studies at
point of care

Novo Nordisk”



Bayesian Dynamic Borrowing in a
nutshell

»
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III

Bayesian Dynamic Borrowing in a “nutshel

Standard RCT Design BDB Design Analysis (ideal)
New treatment New treatment New treatment
1:1 1:X -
randomisation randomisation T )

Control Control Control ot , if congruent
Historical )
Control s

Control , if incongruent
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What is the problem with "borrowing”

*  Why might historical control data not align with concurrent data?
* Population

* Standard of care (sites, state of medical
knowledge/reimbursement landscape)

- FrequentISt operatlng CharaCterIStlcs . ESti ma nd
ctrl

Congruent Increased power, increased type | error
control
Incongruent, 1 1 0.5 Increased type | error - ‘ , .
S yp 1. Such a group must have received a precisely defined standard treatment which
optimistic .
must be the same as the treatment for the randomized controls.

Incongruent, 2 1 1.5 Reduced power 2. The group must have begn part ’of‘a recent clinical study which contained
pessimistic the same requirements for patient eligibility.

3. The methods of treatment evaluation must be the same.

4. The distributions of important patient characteristics in the group should
be comparable with those in the new trial.

5. The previous study must have been performed in the same organization with
largely the same clinical investigators.

6. There must be no other indications leading one to expect differing results
between the randomized and historical controls. For instance, more rapid accrual
on the new study might lead one to suspect less enthusiastic participation of investi-
gators in the previous study so that the process of patient selection may have
been different,

Only if all these conditions are met can one safely use the historical controls
as part of a randomized trial. Otherwise, the risk of a substantial bias occurring
in treatment comparisons cannot be ignored. For instance, ‘literature’ controls O

v

https://doi.orq/10.1016/0021-9681(76)90044-8



https://doi.org/10.1016/0021-9681(76)90044-8

Elements of a BDB design

»

Novo Nordisk®
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Elements of a BDB design:
Bayesian Approach to Borrowing

* The Bayesian Analysis is an application of Bayes Theorem

e Suppose 0 is a vector of parameter(s) of interest (for instance CFB in HbA1c)
* LetY be a collection of “data”

« L(O|Y) is the likelihood

* p(0) is our beliefs about the prior distribution of 8 before seeing the data

e Our posterior belief after having seen the data

LEP©)
POIY) = T emverae

x L(8]Y)p(6)
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Elements of a BDB design:
Incorporating historical data

» Suppose p(0) is not assigned a vague prior, rather p(0) is itself derived from historical data analysed
with a vague prior say

* We have historical data Dy and a prior py(0)
p(01Yy) o< L(O]Yy)po(6)

e Using Bayes rule again
p(61Y,Yy) < L(O|Y)L(O]Yo)po(6)
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Elements of a BDB design:
Bayesian Decision Rules

* Bayesian decision rules in clinical trials are based on the posterior density of the parameters of
interest, for example:

e Superiority: Declare trial a success if with 95% probability our posterior belief about 6 exceeds

some threshold value 6,
Pr(6 = 6,|Y) = 0.95
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Elements of BDB Design:
Design Evaluation: Operating Characteristics (OC)

Bayesian inference is based on the parameter space, as
opposed to the frequentist approach (repeated sampling
of the data)

It is expected that the frequentist operating
characteristics of the design is evaluated and presented

“Pure” Bayesian approaches to statistics do not necessarily place the same
emphasis on the notion of control of type I error as traditional frequentist
approaches. There have, however, been some proposals in the literature that
Bayesian methods should be “calibrated” to have good frequentist properties
(e.g. Rubin, 1984; Box, 1980). In this spirit, as well as in adherence to
regulatory practice, FDA recommends you provide the type I and Il error rates
of your proposed Bayesian analysis plan (see Technical Details, Section 7).

Simulation based exploration of OC

1 (fda.gov)

Novo Nordisk”

Conditional or unconditional approach?

* Should the OC be examined given the historical data at
hand?

 Or should we allow for both trial data and historical
data to be sampled jointly?

What is the sampling space for the historical data?

* Excluding some historical data implies that we are
potentially limiting the sampling space

Distinction between analysis prior which is used when
performing the final analysis, and ...

the design prior which may explore an alternative set of
assumption about the data, which is useful when

evaluating the OC of the design
@


https://www.fda.gov/media/71512/download
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Elements of a BDB design:
How much information is there in a prior? Effective sample size

* In order to be able to judge how many subjects "worth” of information is embedded in the prior, the
prior effective sample size can be useful

 Different proposals in the literature for a given prior p(60)

 What is the sample size n that when combined with a minimally informative prior minimises the
distance between the posterior and p(0)

Determining the Effective Sample Size of a Parametric Prior | Biometrics | Oxford Academic (oup.com) O



https://academic.oup.com/biometrics/article/64/2/595/7331626?login=true
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Proposals to incorporate historical data

* There are many proposals in the literature for how to downweigh historical evidence such that it does not
override concurrent data

* Examples include:
* Conditional power prior (static):

L(8|Y)'p(6)
[ L8|V p(0)do

e Here 0 < A < 1ischosen by the analyst. A = 0 no weight on prior data; A = 1 full weight

p(0|YO) A) =

* Elastic Prior: recent proposal to rapidly down-weigh historical data based on a congruence metric
« Commensurate Prior: between study variation (dynamically) controls amount of borrowing

e Robust MAP prior: Mixture prior of the meta-analytical predictive prior and a vague component

The power prior: theory and applications - Ibrahim - 2015 - Statistics in Medicine - Wiley Online Library ; https://doi.orq/10.1111/biom.13551 ; % O
https://doi.orq/10.1214%2F12-BA722; https.//onlinelibrary.wiley.com/doi/full/10.1111/biom.12242

O



https://onlinelibrary.wiley.com/doi/10.1002/sim.6728
https://doi.org/10.1111/biom.13551
https://doi.org/10.1214%2F12-BA722
https://onlinelibrary.wiley.com/doi/full/10.1111/biom.12242
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The robust MAP prior approach

ﬁ Join Today Member Portal | Latest News Search menu =

Historical Data SIG

Home / SIGs / Historical Data

Objectives

IMany approaches for designing and analyzing clinical trials using historical {or other external study) data have been proposed in the recent past. For example, proposals
have been made for bridging studies, the combination of randomized and non-randomized evidence, and also for more general problems such as across-phases
probability of success calculations. In addition, the ever-increasing number of patient registries and databases for routinely collected data, and recent data sharing
initiatives (e.g., TransCelerate), further underline the importance of these approaches. However, there are still many open questions concerning the role which clinical
trials that use such data can have in drug development. In our opinion, the three most impertant questions are:

Historical Data (psiweb.org)
academic.oup.com/biometrics/article-abstract/70/4/1023/7419945

Full article: Beyond the Classical Type | Error: Bayesian Metrics for Bayesian Designs Using Informative Priors (tandfonline.com)

* Introduced in Schmidli et al. (2014)
* The prior consists of two elements:
*  MAP = meta-analytical predictive prior

* Robustification with a vague prior (=1
subject), to limit type | error inflation in
case of incongruence/drift

Novo Nordisk”


https://www.psiweb.org/sigs-special-interest-groups/historical-data
https://academic.oup.com/biometrics/article-abstract/70/4/1023/7419945
https://www.tandfonline.com/doi/full/10.1080/19466315.2024.2342817
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Constructing the MAP prior

* We have h =1,...,H relevant historical studies of the e Based on this synthesis we ask what is the
control arm predictive distribution for a new study (assuming
* We synthesise the data in a random effects meta- exchangeability between historical data and a
analysis new study):
Y )
n~um
¥rln ~ G(n) ’

e The MAP prior is defined as the marginal
posterior distribution for y,.:

n~ P

* F isthe sampling distribution, G is the exchangeability
distribution, P is a hyper-prior pmap(¥e) = p(¥e|Vr, ..., Yg).
e 1, are parameters (e.g. means of historical studies) Two sources of variation: due to sampling and
e 1 are parameters (e.g. between-study varation) between-study variation
@
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Robustification of the MAP prior

* To protect against incongruence/conflict we * When the final analysis is conducted the
construct a mixture prior of the MAP and a vague congruence between the historical information and
prior the concurrent control dynamically leads to

updating of the weight:

PrMaP(Ye) = (1 — w) - prrap(e) +w - pv(ibe) praar(hdye) = (1 — 50)) - Paar(bee) + () - pv(Welye)

where

* The weight 0 < w < 1 can be interpreted as the

. . . . y B (1 —w) - gmar(y.)
belief that the historical data is not relevant (= 90) = T g + w-av (e
o) = o

(1 —w) - grap(ye) +w - gv(ye)

and g denotes the marginal likelihood functions of the new data under either the MAP-prior
or the vague prior:

guar(ye) = [g F(Welve) - Parap(ibe) dife,

QV(yc) - fnp f(yc|wc) 'pV(wc) diy..
@
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Study Proposal (anonymized)

332 participants

randomised 3:1

T2D

>=18 years old
Metformin

HbAlc 7-10.5%

BMI (> 25 - <35 kg/m?)
eGFR 2 60 mL/min/1.73 m2

Trial objective

glucozenide J glucozenide J glucozenide J
0.25 mg 0.5 mg 1mg

glucozenide B glucozenide B glucozenide B
0.25 mg 0.5 mg 1mg

€---f---mmeeene- === - REEELLEEE LT P PP = mmmm == .
Week 0 Week 4 Week 8 Week 28 Week 33
Randomisation Dose escalation Dose escalation End of treatment End of study

Key endpoints

Other information

Demonstrate clinical
comparability between
glucozenide J and
glucozenide B

® Primary:

® Change from baseline in HbA, .
® Secondary:

® Body weight

® Adverse Events

® Anti-drug antibody (%)

® Double-blind, active-controlled
® Comparability margin: 0.3%-points
® Sparse PK sampling

® Primary assessment is augmented with historical data

Novo Nordisk”
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Participant selection and Summarising Historical Evidence

* Development Programme

e glucozenide phase 3
* Same treatment (glucozenide B)
* Same sponsor

* HbA, is an objective outcome measure

* HbA, evaluated at week 28 or 30

Dev program
(n=11810)

Special populations
(n=3297)

Remaining data
pool
(n=8513)

Not metformin at
baseline
(n=4241)

Remaining data
pool
(n=4272)

Not randomised to
glucozenide B
(n=2697)

Final data pool
(n=1575)

Novo Nordisk®
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The MAP and the robustified MAP prior

Simulation A 4

Simulation B A

Simulation C

Simulation D 4

Simulation E

Simulation F 4

Mean 4

MAP

2.00 l.l'.-'_‘\ 1 _I_‘\i.'l

Response

Synthetic data closely aligned to actual study data

Light blue — dashed: study results with 95% Cl. Dark blue — solid: Shrunk estimates with 95% Crl; Mean and MAP with 95% Crl

density

1.5
1.0
0.5 1
A
0] T = o e e e e i e
2 1
parameter

Novo Nordisk”

Comp. [%]

== compl 50.3

= comp2 27.6

= comp3 2.1
robust 20.0
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Proposed design

 The MAP prior represents information from ¢ Proposed decision rule:
about 20 subjects (with an assumption of
population SD being the same in historical

and new tnal) investigational treatment in the new study. In this example we wish to confirm that the investigational

treatment is non-inferior to the comparator on HbAlc and so we set the criterion to

» After robustification this is reduced to P(Bact — Ocomp < 0.3) > 0.975.
around 14 subjects

To evaluate the operating characteristics we need to set a decision rule and an expectation for the

* 3:1randomisation, 249 subjects to « Explore scenarios where data conflict is + 0.5
investigational treatment and 83 to

comparator treatment

* This suggest that prior information will not
dominate the new trial
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Operating Characteristics (for the chosen design)

Maximum

Type | error

0.85-

Type | error

0.75-
0.70
L] 1 L} 1 L} L ' L} 1
0.50 0.25 0.00 0.25 0.50 0.50 0.25 0.00 0.25
conflict conflict
Figure 13.4: Type | error sensitivity to prior-data conflicts. Dashed line represents the target type | error rate. Figure 13.5: Power sensitivity to prior-data conflicts. Dashed line represents the target power.

Sweetspot

Novo Nordisk®
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Regulatory Feedback & Learnings

* In this particular case the FDA was not accepting
of the study proposal to augment with historical
data for the primary analysis

* Other agencies were more open to the
suggested approach

Essentially all of Pocock’s criteria were satisfied

The design had inflated type | error in some
areas of the sampling space (type | error not
uniformly controlled)

The disease is not rare

Not sufficient rationale for alternative
bias/variance trade-off
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Regulatory Acceptance
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Ultimately a review issue ...

In general, the acceptance of Bayesian methods in clinical trial research goes slow. The
regulators worry that the prior distributions are based on favorable data for the experimen-
tal drug, so that bias and an inflated Type I error rate are caused. As a result, the Bayesian
approach is in general tolerated and accepted only when conventional clinical trial designs
are impossible to implement in practice. This is the case for orphan diseases and pediatric
studies, as mentioned in the Introduction. For medical devices the Bayesian approach is gen-
erally accepted by the regulatory authorities assuming, of course, the same rigorous setup
and conduct as with a frequentist approach, see, for example, Haddad (2020). Moreover, the
Bayesian approach often is the recommended approach to deal with small sample issues.

* However regulators are increasingly willing to engage in discussion around more complex designs,
including designs that borrow from historical data

https://doi.org/10.1214/24-BJPS598
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CID Case Study: Pediatric Patients with MS

CID Case Study: A Study in Pediatric Patients with Multiple Sclerosis
Study Design:

The proposed study is a randomized, double-blind, Bayesian, group sequential, non-inferiority (NI) trial
comparing an investigational treatment to an active control in pediatric patients with multiple sclerosis
(MS), borrowing strength from external data in adults and children. The primary endpoint is the
annualized relapse rate (ARR). One interim analysis for efficacy is planned.

The available external studies consist of a completed trial in pediatric MS patients and several trials in
adult MS patients. A Bayesian framework will be used to incorporate the information from these studies
using informative meta-analytic predictive (MAP) priors for the parameters of the statistical model. This
MAP prior is combined with a non-informative prior component to produce a robust meta-analytic
predictive (RMAP) prior that adapts the amount of information being borrowed based on the
compatibility between the prior and observed data.

CID Case Study: A Study in Pediatric Patients with Multiple Sclerosis (fda.gov)

Discussion:

A topic of the discussion involved the benefit of the current NI design over a superiority trial given the
treatment landscape of pediatric multiple sclerosis, a rare disease with an unmet need. A non-inferiority
design would not expose pediatric MS patients to placebo, given the existence of an approved
treatment. The sponsor and Agency acknowledged that a NI trial may be more attractive to
pediatricians and patients and may potentially minimize patient burden.

The discussion also centered on a feasible and appropriate margin. The Agency requested a
comprehensive and systematic literature review to justify the non-inferiority margin taking between-
trial heterogeneity into account. The Agency recommended that a cautious approach to NI margin
selection was warranted given that only a single historical trial was conducted in the pediatric MS
population and there was uncertainty about using adult study findings for extrapolation. The FDA also
suggested exploration of a modeling strategy incorporating additional, relevant data and accounting for
the differential treatment effect by age. Moreover, estimation of the effect of the active comparator
should incorporate data from controlled studies and between-study variability should be modeled. The
FDA indicated the importance of consistency in the effect between trials. Additionally, FDA stated that
the sponsor should adequately address the statistical implications of using the same historical data to
inform both the NI margin and the prior. The Agency requested extensive simulations regarding the
proposed priors and operating characteristics of the planned design.


https://www.fda.gov/media/172313/download?attachment

Regulatory Outlook
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CID Case Study: External Control in oncology

CID Case Study: External Control in Diffuse B-Cell Lymphoma
Study Design:

The proposed trial is a randomized, open-label, multicenter trial in patients with first-line diffuse large B-
cell lymphoma. Patients are to be randomized 2:1 to treatment vs. control. The primary endpoint of the
study is Investigator-assessed progression-free survival (PFS), defined as the time from randomization to
the first occurrence of progression or relapse, using the 2014 Lugano classification for Malignant
Lymphoma (Cheson et al. 2014), or death from any cause, whichever occurs first.

The key secondary endpoint is overall survival (05). The analysis population for 05 will be augmented by
patients from an external control arm so that approximately half of the patients in the resulting control
group are comprised of patients from the external control. The external control arm will be partially
concurrent with the planned trial. The planned analysis of OS utilizes a Bayesian commensurate prior
with a Weibull model (Lewis et al. 2019) to dynamically borrow information from the external control
arm. Furthermore, propensity score matching will be conducted to select external control patients for
inclusion in the analysis. Inference will be based on the posterior mean and 95% credible interval of the
posterior distribution of the hazard ratio.

https://www.fda.gov/media/155405/download?attachment

Discussion:

Innovative designs, such as those proposed under the CID program, often require stronger assumptions
than designs commonly considered for regulatory decision-making. In addition, key operating
characteristics such as power and Type | error may not have closed-form analytical expressions.
Consequently, simulations are necessary to understand the operating characteristics of these designs. In
this case, the Sponsor provided simulations to understand these operating characteristics in the case of
violations from the various model assumptions, namely the proposed Weibull distribution, the linear
form of the propensity score model, the assumption of no unmeasured confounding, and the assumed
similarity in patient populations. These simulations facilitated discussion between the Sponsor and FDA
on modeling choices and practical considerations for assessing the results.

In general, FDA prefers trial designs and analyses which require minimal assumptions and which result in
straightforward interpretation of the treatment effect in the associated population. In this case, a
consideration was whether the propensity score could be used as a covariate in the Weibull model for
overall survival. In this case, FDA believed that use of the propensity score as a covariate would make
results difficult to interpret and communicate. Consequently, the Sponsor specified propensity score
matching as the method for adjusting for baseline differences in populations.

While simulations are important for assessing operating characteristics intractable to analytical
assessment, many medel assumptions are more tenable if supported by expert clinical input, historical
data, or thoughtful plans for trial implementation. For instance, the chosen covariates for the propensity
score model required clinical rationale based on expert clinical opinion and literature. In addition, the
assumption of the Weibull distribution was supported by results from trials in this disease area which
appeared to be reasonably fit with the Weibull distribution. The assumption of similarity in patient
populations was bolstered by the Sponsor's plan to prioritize enrolling patients in the same sites for
both the randomized arms and external contrel arm when possible. While rationale and simulations
provide crucial support in designs with strong assumptions, ultimately many of these assumptions are
unverifiable. Careful review of the final results will be necessary to further understand the strengths and
limitations of this design.


https://www.fda.gov/media/155405/download?attachment
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FDA review paper on CID (Price and Scott, 2021)

* CIDs (including BDBs) may be considered when:
* Clear unmet need
» Conventional methods not feasible/optimal
* Proposed Methods are reliable

* Explore operating characteristics (via
simulations); particularly for scenarios where
there is drift

The U.S. Food and Drug Administration’s Complex Innovative Trial Design Pilot Meeting Program: Progress to date (sagepub.com)

An overarching goal of using complex innovative
trial designs is to improve clinical trial efficiency with
scientific methods that can reliably answer the ques-
tions of interest and facilitate regulatory decisions.
Clinical trial efficiency may translate into a reduction
in numbers of patients needed for a trial, accelerated
product development, or optimized product develop-
ment (e.g. maximum information obtained from the
research effort). Complex innovative trial designs may
be especially promising when conventional approaches
may not be feasible or optimal, such as in areas where
the population size is small or limited or where there is
an unmet medical need.” Specifically, for small popula-
tions, design innovations that can reduce sample size
may not only speed development but also make infeasi-
ble development programs feasible. In the setting of an
unmet medical need where a conventional trial may not
be feasible or optimal, a complex innovative design
may result in accelerated product development and ear-
lier product availability to patients.
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Summary

* Strong rationale for using historical controls, including:

* Regulatory adoption of historical borrowing designs like BDB is

Address underserved populations
Getting treatments faster to patients

Where it is unethical to give placebo, or want to minimise
exposure to placebo

High unmet medical need

slow, with good reason:

Type | error is not uniformly controlled

Maximise acceptance:

Clear rationale for why borrowing is needed
Engage early with authorities

Transparent selection of historical data and transparency of
assumptions

Explore operating characteristics of the design in plausible
parts of the sampling space

Clear reporting to allow assessment of the influence of
historical data for the result

Part of the difficulty may be in communicating consistently with
regulators, to allow assessment of the risk/benefit of the
proposed design

PSI Historical Data SIG seeking qualification opinion to EMA on a
framework for BDB

FDA has a commitment to publish draft Guidance on the Use of
Bayesian Methodology in Clinical Trials of Drugs and Biologics by

September 30, 2025
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Advancing Precision Medicine with
Innovative In Silico Approaches In
Reproductive Medicine

Daniél Jonker
Director of Clinical Pharmacology
Early Sciences

FERRING




Introducing a few terms from reproductive medicine...

Pl 9.3 - ﬂ\_\
s e o .' :..".' ‘\ /_‘_,.‘i%&
\ / =
Ovaries Oocyte In vitro fertilization Follicle stimulating
(containing follicles) (IVF) hormone (FSH)

Can ovarian physiology be accurately modelled to generate
novel insights and guide the optimal use of FSH?

FERRING
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Evolution of modelling approaches to guide the optimal use
of follicle stimulating hormone in in vitro fertilisation

Descriptive model for Physiological model
oocytes retrieved /l
g: Emax . DoseV \ ._ .- - .. - -
ED,,” + Dose’ ,
Covariates: —
E.. :AMH =

Dose: body weight

- - »
T— p . § —— S e
. N - ~<THT~ pOIG
i ' - L K >~ R N S
S SER Y
- -
' - ' e
= ‘ o Uit e
-,
-
\ / . ‘.

IVF: in vitro fertilisation — . ~ - | - e
AMH: anti-mullerian hormone

87 ©2024 Ferring. All rights reserved.




In vitro fertilisation (IVF) in a nutshell

Stimulating multifollicular growth with the aim to achieve pregnancy

Gonadotrophin-independent  Gonadotrophin- responsive Gonadotrophin- dependent

Follicle growth

2R

¥ e
2 A ar ~
~
Germ Cell ; : ; i 1
Cyst Primordial Primary Secondary Antr; Pre-ovulatory Ovulatory
#™ Pre-granulosa cells @ Granulosacells u\.\ﬁ Oocyte e Thecal cells

'
>

TR

~10 days 36 hours ~5 days ~2 weeks

FSH: follicle stimulating hormone; one of the gonadotropins.

Sharum, Isam. (2016). Regulation of TGFf/Smad Signalling During Early Follicle Development in the Mouse Ovary. 10.13140/RG.2.2.24992.02567.
88 ©2024 Ferring. All rights reserved.
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Number of oocytes can be highly variable

Anti-mullerian hormone (AMH) is a
key predictor for ovarian response

Live birth rate (%)
N w
© ©

Y
o

Low AMH

O..
1 5 10 15 20 25 30 35 40
Egg number

Importance of control of stimulation

- Balance between too few oocytes and risk of
ovarian hyperstimulation syndrome (OHSS)

* Invasive and costly procedure — need to create
best chance for pregnancy at 15t attempt

High AMH

Sunkara SK, et al. Hum Reprod. 2011 Jul;26(7):1768-74. doi: 10.1093/humrep/der106.
89



Follitropin delta dose finding trial in patients

Women undergoing IVF were randomised
to 1 of 5 dose levels of follitropin delta.

The number of oocytes retrieved
iIncreased with the dose of follitropin delta.

AMH level also significantly affected the
number of oocytes retrieved.

Patients with high AMH will require a lower
dose of follitropin delta than patients with
low AMH.

IVFE: In vitro fertilisation
AMH: anti-mullerian hormone

90

Oocytes retrieved (n)

L ® All patients P <.001
14 — A High AMH stratum
ol B Low AMH stratum P <001
10 -
P <.001

8

6 —

4

2 -

0 7 - | I | | |

5.2 6.9 86 103 12.1
Dose of follitropin delta (ug)
Arce JC, et al. Fertil Steril. 2014 Dec;102(6):1633-40.e5. doi: 10.1016/j.fertnstert.2014.08.013 FERRING
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An individualised dosing algorithm was developed based on
a descriptive dose-response model for oocytes retrieved

‘Low responders’

‘High responders’
Dose-response model 20 J P
sl AMH =15 pmollL AMH =15 pmoliL
P E...-Dose” o
ED507 + Dose” L T AR < AMH
Covariates: g ] g
Eax - AMH § 10 1 ':3
Dose: body weight g 8 -—/ - | AVMH g s
8 8
O 6- / 2 w
4 - 4 1
2 - 2:4
0 b : . : : . 0l . . . . .
6 7 8 9 10 11 12 0.10 0.12 0.14 0.16 0.18 0.20
Dose (ug) Dose (ug/kg b.w.)
Outcome
Follitropin delta dosing algorithm in 15t treatment cycle
AMH (pmol/L) <15 15-16 17 18 19-20 21-22 23-24 25-27 28-32 33-39 240
Dose (ug/kg) 12wug 019 018 017 016 015 014 013 012 011 0.10
FERRING

Arce JC, et al. Using AMH for determining a stratified gonadotropin dosing regimen. In: Anti-Mdllerian Hormone, 2016; Nova Science Publishers. Editors: Seifer DB and Tal R.

91 ©2024 Ferring. All rights reserved.
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Individualised dosing afforded an improved safety profile
with efficacy maintained in confirmatory clinical trials

Lower incidence of OHSS with follitropin delta Non-inferior ongoing pregnancy rate

Incividualized olitrapin deta Follitropin delta
(individualised)

30.7% 31.6%

w
(=]
1

s
=
1

Conclusion

_ - A simple mathematical equation made it
| possible to improve how FSH is dosed.

Lad
=]
L

2]
(=]
|

Women with OHSS and/or prevention (%)

I Limitations
10+ LT ,,_-—L//- * The only inputs to the model are the daily
— — l | dose, AMH level and body weight.
o{ i“’" . . , _ - The model does not enable predicting
’ ¢ ety “ * outcome of other patient characteristics, or

effects of a different dosing frequency, or

Nyboe Andersen A, et al. Fertil Steril. 2017 Feb;107(2):387-396.e4. doi: 10.1016/j.fertnstert.2016.10.033.

of dose changes during stimulation. FERRING

OHSS: ovarian hyperstimulation syndrome

PHARMACEUTICALS
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Building a new, more physiological model

The body of literature on follicle development is extensive

Hormonal regulation  Clinical trial data

.1’ GnRH . -
[P ol 16 ® All patients
14 A High AMH stratum

What to Modular organisation
include?

P <.001

. B Low AMH stratum

£ What level
: e of detail?
o Z

0 L

Existing models

T T T T
52 6.9 86 103 121 l
o
. 5

I I
® 254 : I :
N I | I I
o _ 204 | 1 1 1
5 E I I I I
3Es1 /0
19 == . )
s 101 N\ : Which Which
54 : ' outcomes? clinical
60 80 100 120 : 2
Simalda settings?
FERRING
Zheng M, et al. Front Endocrinol. 14:1268248. doi: 10.3389/fend0.2023.1268248; Fischer S, et al. Front Endocrinol 12:613048. doi: 10.3389/fendo.2021.613048. PHARMAGEUTIOALS
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Computational model framework

Processes spanning

* Cellular level

- Steroidogenesis, receptor dynamics
in theca cells and granulosa cells InhB

* Organ level. ovaries
* Follicle numbers and size
* Organism
* Pharmacokinetics, pituitary feedback

Fol1 Fol2 @) FoIN
LH

AMH

OS protocol Dose regimen

Granulosa cells

Theca cells

A complex model
« 70 model compartments

& -
G ::
aw -

500+ model parameters
« 1700+ reactions

AMH, anti-Mdllerian hormone; AR, androgen receptor; A,, androstenedione; CYP17, cytochrome P450 17A1; CYP19, cytochrome P450 19A1 (aromatase); E,, oestradiol; FSH, follicle-stimulating hormone; FERRING
FSHR, follicle-stimulating hormone receptor; InhB, inhibin B; LH, luteinizing hormone; LHR, luteinizing hormone receptor; OS, ovarian stimulation; T, testosterone. PHARMAGEUTICALS
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Simulation of follicle growth in a single patient

~

25+

20+

15+

10+

Follicle diameter (mm)

Lines represent individual follicles

10 ug follitropin delta

0 5
Days from start of simulation

10

/

95

©2024 Ferring. All rights reserved.
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Observed and simulated follicle growth over time

/ 15+ Median and interquartile range shown \
E (&)}
E 10 g
N S
o AN
5 To!
S 97 2
® —m— Observed QO
S —&— Simulated
c 0f
g I | | ;
< Dayi Day 4 Day 6 EoS

FERRING
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Follicle size distributions on Day 6

-

Number of follicles

6 - Mean and 95% confidence interval shown \
| Observed
5 | Simulated
4__ o
—=
31 ¥
2+ o
%
al ..
0 A
2-7 mm 89 mMm 10-11 mm 12-14 mm 15-16 mm =217 mm /

97
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Dose-dependence of follicle size on Day 6

Median and interquartile range shown \

—_— —
N A
| i

—— Observed
—&— Simulated

5 6 7 8 9 10 11 12
Dose of follitropin delta (ug) /

/ Average follicle size (mm) \

FERRING
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Applications of the in silico model

©2024 Ferring. All rights reserved.




The team behind this work

R

pwc

FERRING

PHARMACEUTICALS

Christian Secchi, Erica Schoeller, Sarah Grover, Lars-Erik Kyhl and Pernille Maria Manuel.
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Thank You. Questions?

f 1{" Iiw
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Break



Today’s programme

8:30 -9:00
9:00-9:10

9:10-9:45

9:45 -10:20

Break
(30 minutes)

10:50-12:20

Lunch
12:20-13:30

Randi (DSBS)
Jonathan (FMS)

Corine Baayen (Ferring)

Henrik Thomsen (Novo)

Anna Berglind (Novo)
Jonas Haggstrom (Cytel)
Niklas Berglind (AstraZeneca)

Breakfast and arrival

Welcome

Topics in group sequential designs

Design and analysis of group sequential trials for
repeated measurements when pipeline data

occurs: a comparison of methods

Family-wise error for multiple time-to-event
endpoints in a group sequential design

Working as a pharmaceutical statistician

Medical statistics in practice — different ways of
making a difference

13:30 - 14:05

14:05-14:40

Break
(20 minutes)

15:00-15:35
On Teams

15:35-16:00

Martin Bgg (Novo)

Daniel Jonker (Ferring)

Emilie Hgjbjerre-Frandsen
(Novo & AAU, Ph.d.
Berkeley US)

Wrap up

Utilization of historical data

Historical Borrowing

Advancing Precision Medicine with Innovative
In Silico Approaches in Reproductive Medicine

Next Generation of young statisticians

Prognostic Score Adjustment

End of the day



Session 4: Next Generation of
young statisticians



S [ Prognostic score
adjustment

Enhancing study power through historical data

Emilie Hgjbjerre-Frandsen, Industrial Ph.D. student at Novo Nordisk and AAU



Disclaimer

* Presenteris an employee of Novo
Nordisk A/S

* Views and opinions expressed are
those of the presenter and not
necessarily Novo Nordisk A/S



* Work in the setup of an
RCT

* The estimand of interest is
the average treatment :
effect W = E[Y(1) - Y(0)] adjustment

A tutorial on improving RCT power using prognostic score

Emilie Hgjbjerre-Frandsen®'~> | Mathias Lerbech Jeppesen & Rasmus Kuhr Jensen! | Claus
2

e Schuler A et al. Increasing
the efficiency of
randomized trial estimates

Dethlefsen'? | Rasmus Waagepetersen

IBiostatistics, Novo Nordisk A/S,

Vla ||near adjustment for a Vandtirnsvej 114, Spborg, Denmark Abstract
: h *Department of Mathematical Sciences, The use of historical data to increase power in clinical trials has been a topic of
prog nOStlc sScore. T e Aalborg University, Skjernvej 4A, Aalborg ’ : ; 0

@st, Denmark interest for many years. A recent approach adjusts linearly for a prognostic score.
This is supported by asymptotic results involving influence functions for asymptoti-

International Journal of
Correspondence

BiOStatiStiCS - 202 1 *Emilie Hgjbjerre-Frandsen, Aalborg, cally linear estimators. We provide further justification by a finite sample optimality

Denmark. Email: chfd@novonordisk.com result. A simulation study is conducted to investigate the performance in finite sam-
ples, comparing to standard procedures such as propensity score matching for RCTs
(PSM-RCT) and ANCOVA using simple baseline adjustment. The simulation study
investigates four different data generating scenarios to test the performance and
sensitivity of the method under different assumptions. Unlike PSM-RCT, linear ad-
justment for a prognostic score avoids biased treatment effect estimates and maintains

control of type I error probability. The simulation study shows that the method is

, a—— | rgb‘q_sl; QEE_‘mSt dswatlons fpm ﬂ(:*()d assumpgq.ns_and poor performance of thg, - |

*Randomised clinical trials (RCT)

*https://github.com/NNpackages/PostCard



https://github.com/NNpackages/PostCard

Motivation

RCTs in general Typical solution

Sufficient level of power Recruitment of large

while ensuring low number of participants
probability of type | error

- Costly and time-
consuming

Our goal

Methods leveraging
historical data aim to
reduce participant
numbers without
jeopardizing trial
integrity



Baseline covariates Treatment Outcome
W A Y
Historical iA:O .
data 7.9

[ ] 5.1
New RCT data A=0 |

External controls

Unrealistic
Inflated . h
type | assumptions on the

ExIsting .
solutions

Use historical

Baysian statistics estadﬁitfhtﬁrior \ Analyse

trial data




Proposed
solution

Determine a prognostic score estimated from historical
data
p(W) = E[Y |W,A = 0]

Use ANCOVA model adjusting for p(W)
Y=ATE -A+ B-W + a-p(W)+ error

The higher correlation with the outcome the higher

power increase

.: ® °e o9
“ T a o ©° P
® o0, ® L PO 0o.9®
(Y @ o
(] 9
o | e |es
A=0  A=1 w pw)



How the method works

Step 1

e Curate historical data from
different sources

* Train a prognostic model p

K||
@
L2

L

— Step 2

 Evaluate the performance
of the prognostic model

* Correlation between
outcomes and predicted
outcomes on an
independent test data set

Patient w, wWs
Number

2

3

4

Step 3

Predict the prognostic
scores for each of the
participants in the new trial

1 M 48 175 55 1 34
2 M 34 179 64 0 42
3 K 18 189 87 1 67
4 M 22 165 35 0 21

ﬂ

pwh)
M 34 179 64 0 42 p(w?)
K 18 189 87 1 67 p(w?)
M 22 165 35 0 21 plw?)

— Step 4

pw).
e Type | error control

variance among RAL estimators

 Use ANCOVA model adjusting for

» Under specific requirements ATEj
has the lowest possible asymptotic

Kr heorem 1

Assume that
E[Y(1)| W] = E[Y(0)|W] + ATE.

Also assume that the conditional variance

Var(Y|A,W) = o?

unbiased given (A, W) and of the linear form
B(W,A)Y

uhere the 1 X n matrix B(W, A) is a function of W and A.

does not depend on (A, W). Then the OLS estimate of the ATE obtained from an ANCOVA
model with design matrix X = [A E[Y(0)| W]] is an unbiased estimator of the ATE and
has the lowest possible variance among all estimators of the ATE that are conditionally

~

%

*Regular and asymptotically linear (RAL)




Simulation study



D ad ta S | Mmu | = t | ONn an d We perform a simulation study to test the finite sample
- properties and sensitivity to method assumptions
scenarios

. Data is simulated conditional on W and A from a normal

distribution

e Y(A) | W~ &(aTW: W + bW + cTWA + ATE - A,6%) (1)

Linear covariate effects

Homogeneous treatment effect 05 1 0 0
Heterogeneous treatment effect 05 1 4 0
Covariates shifted 05 1 4 4

Table 1. Coefficients of equation (1) for four data generation scenarios. a: degree of non-linearity
and interaction effects. b: linear main effects. c: interaction effect with covariates and the
treatment. d: is the mean of the normal distribution that the covariates are generated from in
the historical data.



Error estimates

4]

£ ‘I. ie

[)]

o ate Ao

I<T: o ? ® z

Glled points are \ : g 4 o . :

2 A e ol
mean of standard £ * ’ * *HE
error estimates. ° . 5
Crosses are the 5 ¢ ¢

) L2, 0
root mean g 1 "y

S ° [
squared error B, o o o N

@ M S E ) . / N‘o Yles Nlo Yles Nlo Y(Ias Nlo Yés
Covariate adjustment

A No prognostic score adjustment @  Prognostic score adjustment

A No use of historical data A PSM . Prognostic score estimated randomly . Prognostic score estimated from RF . Oracle,

*Propensity score matching (PSM)
*** Random and Random forest refers two the prognostic model being used to determine the predicted outcomes for each participant and afterwards adjusted for



Power and type | error

100%

fe
®

3%

2%

mpirically estimated power

1%

Empirically estimated type | error rate

Robustness property

0%

2000 0 500 1000 1500 2000
n n
Difference-in-mean mm PSM mmm  Prognostic score estimated randomly mmm  Oracle,
mes ANCOVA | mmm  Prognostic score estimated from RF

*Propensity score matching (PSM)
** n is the sample size of the current RCT data, with the historical data amount being n’=5*n
*** Random and Random forest refers two the prognostic model being used to determine the predicted outcomes for each particip ant and afterwards adjusted for



Case stud




Trial design

474 patients

Study information
. 2D New treatment £ OADs Follow-up

° HbAlc > 8.0% —

® QOpen label, Parallel group

[ ] - -
*  BMI<40kg/m? Insulin Glargine + OADs Follow-up Treat-to-target

® 3.9-5.0mmol/L

) 0 Duration in weeks 40 45

Randomisation (1:1)

Study objective

To confirm the efficacy (superiority on HbA,. ) and compare safety of new treatment compared
with daily insulin glargine, with or without OADs in participants with T2D

Study Estimand

Primary: The treatment effect between new treatment and daily insulin glargine in change in
HbA, . from baseline to week 40 in participants with T2D regardless of discontinuation of
randomised treatment for any reason and regardless of initiation of non-randomised insulin
treatment or additional anti-diabetic treatments for more than 2 weeks

*Type 2 diabetes (T2D), other antidiabetic drug (OAD), continuous glucose monitoring (CGM)

End of treatment

Key endpoints
° Primary: Change in HbA, from baseline to week 40
° Secondary:
° Change in body weight from baseline to week 40
° CGM based endpoints from week 36 to week 40**

Number of level 2 and 3 hypoglycaemic episodes from baseline to week 45



Phase 3b
Why prognostic score adjustment?

* Label expansion
* Crucial to have study results ready between approval and launch

e Solution: Minimise the number participants in the study by leveraging historical data, while
maintaining power and Without compromising the type I error rate



Variable importance

FPG (mmol/L) =

AGE -

Thrombocytes (1079/L) =
Haemoglobin Blood (mmol/L) =
WGTBL =

BMIBL =

DIABDURY -

Triglycerides (mmol/L) =

Sodium (mmol/L) =

C’----.I

1 1 1
250 500 750
Importance

VIMP plot from Random forest machine learning model.
The variable importance measure is computed from permuting out-of-bag (OOB) data; for each tree, the prediction error on the OOB portion of the data is recorded (error

rate for classification and MSE for regression). Then the same is done after permuting each predictor variable. The difference between the two are then averaged over all
trees in the forest and normalized by the standard deviation of the differences. If the standard deviation of the differences is equal to 0 for a variable, the division is not

done (but the average is almost always equal to 0 in that case).



Required sample size

Power

100%

80%

60%

40%

20%

0%

' 390

418

200 300 400

. ANCOVA | (HbA1C) mmm Prognostic score mmm Prognostic score (deflation 0.9) === Prognostic score (deflation 0.8)

446

500

mmm ANCOVA | (HbA1C, FPG and age)




Practical experience

e Difficult to combine historical data into a curated
data set that can be used for model fitting
e Strong predictors such as baseline HbAlc may limit

the gain in precision if already included in the IEEARNES

ana Iys Is as covariates PROCOVA™ Handbook for

the Target Trial Statistician

* Choice of deflation parameter could seem arbitrary

e Guidance can be found in PROCOVA™ ——

75 Haw thorne Street, Suite 560
San Francisco, CA 94105

Handbook for the Target Trial Statistician*

* procovatm-handbook _en.pdf (europa.eu)



https://www.ema.europa.eu/en/documents/other/procovatm-handbook_en.pdf

Compromises

Lack of power if prognostic score has a lower effect than assumed
* However, not lower than the power for the analysis without prognostic
score with reduced number of participants
Smaller sample size gives lower power for the statistical analyses of other
endpoints that does not have prognostic score adjustment
Subgroup analyses cannot be done using prognostic score adjustment since
the effect could already be captured through the prognostic model

Is only for continuous endpoints



Question




Wrap up and closing
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